DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING PRINCE OF SONGKLA UNIVERSITY

Midterm Examination: 1st Semester Academic year: 2012

Date : Auguest 5th, 2012 9:00 – 12:00 Room : S817

Subject: 230-321 Chemical Engineering Kinetics and Reactor Design

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น หรือ พักการเรียน 1 ภาคการศึกษา และ โทษสูงสุดคือ <u>ให้ออก</u>

- 1. อนุญาตให้นำหนังสือ Elements of Chemical Reaction Engineering by Fogler 1 เล่ม และ
 Dictionary หรือ Talking Dictionary เข้าห้องสอบ
- 2. อนุญาตให้ใช้เครื่องคำนวณทุกชนิด และใช้ดินสอในการทำข้อสอบ
- 3. ห้ามพูดคุยหรือหยิบยืมหนังสือ เครื่องคำนวณ หรือเครื่องเขียน
- 4. หากท่านทำข้อสอบเสร็จก่อนหมดเวลา ให้นั่งอยู่กับที่แล้วยกมือแจ้งกรรมการคุมสอบ

ข้อสอบมี 4 ข้อ 8 หน้า (รวมปก)

Name	.ID
------	-----

Problem	1.1	1.2	1.3	1.4	2	3	4	Total
Score	10	10	10	10	30	30	25	125
You got					-			

1. (40 points)

1.1 (10 points) The gas phase elementary reaction is to be carried out isothermally. The molar feed is 50% $\rm H_2$ and 50% $\rm N_2$ at a pressure of 16.4 atm and 227 $^{\rm O}$ C

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 \rightarrow NH_3$$

1. What is limiting reactant?

(4 points)

2. What is entering concentration of N_2 ?

- (4 points)
- 3. Write down the rate law base on the limiting reactant.
- (2 points)

1.2 (10 points) The rate law for the reaction 2A + B \rightarrow 3C is $-r_A = kC_A^2 C_B$ with $k_A = 25$ $(dm^3/mol)^2/s$. What are k_B and k_C ?

1.3 (10 points) At equilibrium condition, calculate the concentration of each species and net rate of formation of A in term of K_C for the liquid phase reaction A \longleftrightarrow 3C in flow reactor with no pressure drop. At temperature 400K, $K_C = 0.25 \text{ (mol/dm}^3)^2$.

1.4 (10 points) The liquid phase elementary reaction of 2A→B takes place in a PFR with a rate constant, k = 0.02 dm³/(mol.sec) and initial concentration of A is 0.2 mol/dm³. What is a space time required for 85% conversion?

2. (30 points, 10 points for each question) For the irreversible liquid-phase reaction: A→2B as carried out adiabatically and the following data recorded:

х	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-r _A (mol/dm ³ .min)	1	1.5	2	3	4	5	5	4	3	2

The entering molar flow rate of A was 300 mol/min.

- 1. If the reaction is carried out in a batch reactor with constant volume at 50 dm³ in which pure A is fed to the reactor for one minute, what length of time is necessary to achieve 60 % conversion?
- 2. Over what conversions would the CSTR and PFR reactor volumes be identical? (Assumption: Different in volume \pm 20 dm³ can accept as identical)
- 3. If effluent from CSTR in previous part (part 2) is desired to feed to one reactor in order to raise conversion to 90%. Which reactor you will choose, CSTR or PFR? And what is the volume of that reactor? (Assume: conversion from first CSTR in part 2 is 70%)

Student	ID		• • • • • • • • • • • • • • • • • • • •					Page	#5 out of 8
		THIS PA	GE IS RE	SERVED	FOR PR	OBLEM 2	2		
							_		

3. (30 points) The gas-phase oxidation of ammonia. $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ The feed consists of 25 mol% ammonia in air at 8.314 MPa and 227°C.

1. What is the total entering concentration?

(5 points)

2. What is the entering concentration of ammonia and oxygen?

(8 points)

3. Calculate volume of CSTR to obtain 70% conversion with initial volumetric flow rate 500 dm³/min (17 points)

Assume:

- the reaction is first order in both reactants
- rate constant 25 dm³/ (mol.min)
- constant temperature and pressure

Student ID	Page #7 out of 8
THIS PAGE IS RESERVED FOR PROBLEM 3	

4. (25 points) The gas phase elementary reaction A → B takes place isothermally in a PBR with 1 kg. of catalyst. The feed consist of pure A, enters the PBR at a pressure 20 atm. The conversion exiting the PBR is 0.3 and the pressure at the exit of PBR is 5 atm. If the PBR were replaced by a "fluidized" CSTR with 1 kg. of catalyst, what will be the conversion at the exit of CSTR? Assume there is no pressure drop in CSTR