T.	
<u> </u>	ν .
የ የክ	รห้สรห้ส
D O	· · · · · · · · · · · · · · · · · · ·

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination : Semester I Academic year : 2012

Date: 4 August, 2012 Time: 09.00 – 12.00 AM

Subject: 231-201 Material and Energy Balances Room: S203

รายละเอียดการทำข้อสอบ

1. ห้ามนำข้อสอบบางส่วนหรือทั้งหมดออกจากห้องสอบ

2. นำหนังสือหรือเอกสารเข้าห้องสอบได้

3. ห้ามหยิบยืมเอกสารใดๆ และพูดคุยกับนักศึกษาอื่นขณะทำข้อสอบ

4. ข้อสอบมีทั้งหมด 6 ข้อ มีจำนวนทั้งหมด 7 หน้า

5. อนุญาตให้ทำข้อสอบด้านหลังกระคาษคำตอบแต่ละข้อได้

6. กรอกชื่อและรหัสนักศึกษาด้านหน้าข้อสอบและกรอกรหัสนักศึกษาทุกหน้าของกระดาษ

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	10	
2	20	
3	20	
4	20	
5	25	
6	25	
รวม	120	

อ.จันทิมา ชั่งสิริพร ผู้ออกข้อสอบ

~ %	,															
รหส															٠.	

- 1. An aqueous feed solution of sulfuric acid (H_2SO_4) containing 20.0% H_2SO_4 by mass is fed to mixer at a flow rate of 20 kg/h. It is desired to produce 32.0% H_2SO_4 solution by mixing with a stream of 40.0% H_2SO_4 .
 - a) Basis and draw the diagram of this process.
- b) Calculate the ratios (kg feed solution/kg mixing stream). (10 กะแนน)

รห์																									
a r	ы	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠					٠	٠	٠	٠	٠	٠	٠.	٠	

- 2. A stream of humid air containing 10% water vapor enters to a condenser in which 85% (by mole) of the water vapor in the air is condensed. The flow rate of the condensate (the liquid leaving the condenser) is measured and found to be 35 L/h. Dry air may be taken to contain 21 mole % oxygen, with the balance nitrogen. (Note: Outlet gas is not dry air.) (20 กะแนน)
 - a) Draw the flowchart of this process and basis for calculation.
 - b) Calculate the molar flow rate and mole fractions in the outlet gas stream.
 - c) Scale up to a produce air 5000 lb-mol/h, and draw flowcharts for the scaled processes.

ď															
รหส.														٠.	

3. A labeled flowchart of a continuous steady state two-unit process is shown below. Each stream contains N_2 and O_2 , in different proportions. Three streams whose flow rates and/or compositions are not known as labeled (1), (2), and (3). (20 คะแนน)

<u>Calculate</u> the streams whose flow rates and/or compositions are not known.

ະພິລ													
รหส.	 	 ٠.	٠									 	

4. Acrylonitrile is continuously produced from the reaction of propylene, ammonia, and oxygen:

$$C_3H_6 + NH_3 + \frac{3}{2}O_2 \rightarrow C_3H_3N + 3H_2O$$

The feed contains 30.0 mole% propylene, 25.0% ammonia, 30.0% oxygen, and balance N_2 . (20 คะแนน)

Determine: a) Draw the process diagram of this reactor?

- b) Which reactant is limiting?
- c) The percentage by which each of the other reactants is in excess?
- d) The molar amounts of all product gas if a fractional conversion of 55.0% the limiting reactant is achieved by using extent of reaction?

e .															
รหส.												 		٠.	

5. Chemical reaction to produce ethylene (C_2H_4) from ethane (C_2H_4) can be shown as following:

$$C_2H_6 \rightarrow C_2H_4 + H_2 \quad (1)$$

$$C_2H_6 + H_2 \rightarrow 2CH_4 \quad (2)$$

The reactions occur by feed C_2H_6 , H_2 , and N_2 at flow rate of 150 mol/h. The feed contains 80.0 mole% C_2H_6 15.0 mole% H_2 and balance N_2 . Fractional conversion of C_2H_6 is 0.65 and C_2H_4 (main product) is produced 55 mol/h. (25 AZIIII)

- a) Draw the process diagram of this reactor?
- b) What is the percentage yield of C₂H₄ in this reaction?
- c) Flow rate of each gas in the product stream?
- d) What is selectivity of C₂H₄ to CH₄ production?

รหัส.			_	_	_	_	_	_	_	_	_	_	_	_	_						

6. Fuel of C_4H_{10} is continuously fed to burn at flow rate of 100 mol/h to combustion chamber:

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

- a) What is the theoretical O₂ flow rate if complete combustion occurs in the reactor?
- b) What is the theoretical air flow rate assuming that 55% of the $\rm C_4H_{10}$ reacts to form $\rm CO_2$?
- c) If 150% excess air is supplied, what is the flow rate of air entering the reactor?
- d) The molar amounts of all product flue gas using extent of reaction?

Note: c) using the condition of b) and d) using the condition of c) (25 คะแนน)