คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ 1 วันที่ 6 สิงหาคม 2555			ประจำปีการศึกษา 2555 เวลา 09.00-12.00 น.		
วิชา 215-2	231 Engineering Thermodynamic I	หอง	Robot		
2.	ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำทุกข้อในข้อสอบ อนุญาตให้นำกระคาษ A4 เข้าห้องสอบได้ 1 แผ่น อนุญาตให้นำเครื่องคิดเลข, Talking Dictionary ห	รศ.กำพล	ารม เข้าห้องสอบได้ ประทีปชัยกูร อกข้อสอบ		
ชื่อ-สกุล		รหัส			

ชื่อ-สกุล..... รหัส......รหัส......

1) Two sites are being considered for wind power generation. In the first site, the wind blows steadily at 7 m/s for 3000 hours per year, whereas in the second site the wind blows at 10 m/s for 2000 hours per year. Assuming the wind velocity is negligible at other times for simplicity, determine which is a better site for wind power generation. Hint: Note that the mass flow rate of the air is proportional to wind velocity. Given: $\rho_{air} = 1.25 \frac{kg}{m^3}$ (15 points)

2)

2.1	Complete	this	table	for	H_{2}	0
~	Complete	CITIO	acre	101	447	$\overline{}$

(5 points)

$T,^{o}C$	P, kPa	$v, \frac{m^3}{kg}$	Phase description
50		7.72	
	400		Saturated vapor
250	500		
110	350		

2.2 The pressure in an automobile tire depends on the temperature of the air in the tire. When the air temperature is $25^{\circ}C$, the pressure gage reads 210 kPa. If the volume of the tire is $0.025 \, m^3$, determine the pressure rise in the tire when the air temperature in the tire rises to $50^{\circ}C$. Also, determine the amount of air that must be bled off to restore pressure to its original value at this temperature. Assume the atmospheric pressure is $100 \, \text{kPa}$.

Given:
$$R_{air} = 0.287 \frac{kPa.m^3}{kg.K}$$
 (10 points)

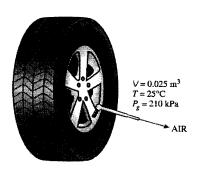


FIGURE P3-77

ชื่อ-สกุล......รหัส......รหัส......

3)

3.1) A piston-cylinder device initially contains 0.07 m³ of nitrogen gas at 130 kPa and 180°C. The nitrogen is now expands to a pressure of 80 kPa polytropically with a polytropic exponent whose value is equal to the specific heat ratio (isentropic expansion). Determine the final temperature and the boundary work done during this process.

Given: for N₂
$$R = 0.2968 \frac{kJ}{kg.K}$$
, $k = 1.395$ (15 points)

4		o.
ีฬถ_ส⁄ ค)តិ	รหัส
มบาเก	Jbl	a ri 61

3.2) Complete the table below on the basis of the conservation of energy principle for a closed system. (10 points)

Q _{in} , kJ	W _{out,} kJ	E ₁ , kJ	E ₂ , kJ	M, kg	e_2-e_1 ,
:					kJ/kg
350		1020	860	3	
350	130	550		5	
	260	600		2	150
-500		1400	900	7	
	-50	1000		3	-200

4) Saturated R-134a vapor at 40°C is condensed at constant pressure to a saturated liquid in a closed piston-cylinder system. Calculate the heat transfer and work done during this process in kJ/kg. (25 points)

5) The piston diameters as shown in the figure are $D_1 = 8 \ cm$ and $D_2 = 5 \ cm$. The pressure in chamber 3 is 200 kPa. Chamber 1 contains 0.2 kg of air, and chamber 2 is filled with condensing R-134a. The entire assembly is maintained at $48^{\circ}C$. Determine the volume of chamber 1. Given: for air $R = 0.287 \ \frac{kPa.m^3}{kg.K}$ (15 points)

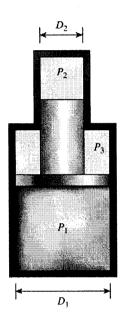


FIGURE P3-111