Name			

Prince of Songkla University Faculty of Engineering

Midterm Test

Semester 1/2012

4 August 2012

9:00-12:00

215-613 Mathematical Methods in Engineering

Room S203

Direction:

- 1. All types of calculators, document and books are permitted.
- 2. There are totally 5 problems. Solve all of them.

Total 70 points

Problem #	Full Score	Your mark
1	10	
2	15	
3	10	
4	15	
5	20	
Total	70	

Perapong Tekasakul Instructor

215-613 Mathematical Methods in Engineering

Midterm Test Semester 1/2011 **Total 70 points**

1. Describe if the following differential equations are *ordinary* or *partial*, *linear* or *non-linear*, *homogeneous* or *nonhomogeneous*, and give the *order* of the differential equations as well. (10 points)

(a)
$$x^5 \frac{d^3 y}{dx^3} + \left(\frac{dy}{dx}\right)^2 + 32y - 5 = 0$$

(b)
$$\frac{d^3u}{dy^3} - y^{1.5} \frac{d^2u}{dy^2} = u$$

(c)
$$\frac{dy}{dx} - \frac{1}{y} = y$$

(d)
$$y^2 \frac{d^4 y}{dx^4} - 3 \frac{d^2 y}{dx^2} = y$$

(e)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - 1 = 0$$

#	Order	ODE or PDE	Linear or nonlinear	Homogeneous or nonhomogeneous
(a)				
(b)				
(c)				
(d)				
(e)				

lame			

2. Solve the initial value problem. (15 points)

$$y'' - 2y' + y = 4e^{x}$$
$$y(0) = 4$$
$$y'(0) = 1$$

$$y(0)=4$$

$$y'(0) = 1$$

3. What are solutions to the following ODE?

$$x^{2}y'' + \frac{1}{4}(x + \frac{3}{4})y = 0$$

Hint: Set $y = u\sqrt{x}$, $\sqrt{x} = z$ (10 points)

Name

4. Solve the following problem. (15 points)

$$x^{2}y'' - 0.2xy' + 0.36y = 0$$
$$y(1) = 1$$
$$y'(1) = 2$$

Name					
------	--	--	--	--	--

5. The mass-spring-damper system is subjected to an external force and motion of the mass is described by

$$y'' + 2y' - 3y = \delta(t - 2) + 2u(t - 3)$$
$$y(0) = 0$$
$$y'(0) = 0$$

Determine the response, y(t). (20 points)