Name :	Student ID # :
--------	----------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๑ วันอาทิตย์ที่ ๕ สิงหาคม พ.ศ. ๒๕๕๕ วิชา ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๕ เวลา ๙.๐๐-๑๒.๐๐ น. ห้องสอบ A401 / S201

ทุจริตในการสอบ ปรับขั้นด่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ษ. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	୭୯.	
Jes)mo	
តា)ao	
ď)හරේ	
ď	jao	
รวม		

- 1) Answer the following questions
 - (a) What is the mobility of this mechanism?

- (b) How many ternary links (links with 3 joints) does the mechanism in (a) have ?
- (c) How many inversions does this mechanism have, including the one shown?

(d) Is the rolling contact joint of the mechanism above J_1 or J_2 (joint with 1 dof or 2 dof) ?

(e) Determine the mobility of this mechanism.

- (f) Is the pin-in-slot joint a lower pair?
- (g) Determine the mobility of this mechanism.

(h) Are there quaternary links (link with 4 joints) in the mechanism in (g)? If yes, which links?

2) (20 points) The mechanism shown is a six-bar quick-return mechanism. The fixed pin joints O_2 and O_4 are 10 mm apart. Link 2 is the input crank and link 6 is the output slider.

- (a) Draw the mechanism when link 6 is at its both limit positions using the template above.
- (b) If link 2 is rotating with a constant speed, assuming the forward motion of link 6 is upward, which direction must ω_2 be so that it is a quick-return?
- (c) What is the stroke of this mechanism?
- (d) Determine the time ratio between advance stroke and return stroke.

4) (20 points) For the mechanism shown below, link 4 is rotating with an angular velocity of 2 rad/s clockwise. Determine the angular velocity of link 4 and the velocity of link 6.

0v +

Scale 1 mm : 1 mm/s

5) (20 points) For the mechanism shown in the figure, the contact between links 4 and 1 at point C is a rolling contact and the contact at point D between link 4 and 5 is a sliding contact.

- (a) Locate all the poles (instantaneous centers of velocity) at this instant on the figure.
- (b) If link 2 has a velocity of 50 mm/s to the right, determine the angular velocities of links 4 and 5.

0v ₊