\qquad Student ID \# : \qquad

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ ๑ วันพุธที่ ๑๐ ตุลาคม พ.ศ. ๒๕๕๕
วิชา ๒ด๖-ต๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๕๕๕
เวลา ๑๓.ต๐-๑๖.๓๐ น. ห้องสอบ 5817 , หัวหุ่นยนต์

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง
๑. ข้อสอบมีทั้งหมด ๕ ข้อ คะแนนเต็ม ๑๐० คะแนน ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุฉาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	bo	
๒	60	
๓	bo	
\sim^{\sim}	bo	
๕	bo	
รวม	๑00	- ${ }^{\text {c }}$

\qquad
\qquad

1) In the mechanism shown, link 2 is having angular velocity of $5 \mathrm{rad} / \mathrm{s}$ clockwise, and angular acceleration of $10 \mathrm{rad} / \mathrm{s}^{2}$ clockwise. Find the acceleration of point B and angular acceleration of link 3.

Scale $1 \mathrm{~mm}: 2 \mathrm{~mm} / \mathrm{s}$

$0 v+$

Scale $1 \mathrm{~mm}: 10 \mathrm{~mm} / \mathrm{s}^{\wedge} 2$
$\mathrm{Oa}+$
\qquad
2) The planetary gear set consists of gears $2,4,5,6$ and a planet carrier 3 as shown. If the numbers of teeth of the gears are as follows; $N_{2}=40 \mathrm{~T}, \mathrm{~N}_{4}=15 \mathrm{~T}, \mathrm{~N}_{5}=10 \mathrm{~T}$ and $\mathrm{N}_{6}=80 \mathrm{~T}$. The shaft of gear 2 is the input and rotates at 200 rpm clockwise, while gear 6 is fixed. What is the speed and direction of rotation of the planet carrier 3 ?

\qquad
\qquad
3) The mechanism is in static equilibrium at this position, with $P_{D}=40 \mathrm{~N}$ acting at point D on link 4 as shown. Use graphical method to determine the magnitude and direction of the vertical load P_{B} acting at point B on link 3. Also draw force vectors on the given free body diagrams of each link. The dimensions are given as $R_{A O 2}=20 \mathrm{~mm}, R_{A B}=50 \mathrm{~mm}, R_{A C}=50 \mathrm{~mm}, R_{B C}=20 \mathrm{~mm}, R_{\mathrm{O} 204}=40 \mathrm{~mm}, R_{\mathrm{CO} 4}=40 \mathrm{~mm}$, $R_{D O 4}=30 \mathrm{~mm}, R_{D C}=20 \mathrm{~mm}$.

\qquad
\qquad
4) The mechanism consists of link $A B C$ and 2 frictionless pins at A and B with neglegible weight. Point A is moving at a constant speed $30 \mathrm{~mm} / \mathrm{s}$ to the right. The velocity and acceleration analysis diagrams are given as shown. If the centroid of link $A B C$ is at B with mass of 2 kg , and $I_{G}=3000 \mathrm{~kg} . \mathrm{mm}^{2}$. Determine the force P acting perpendicular to link $A B C$ at C to cause this motion.

\qquad
\qquad
5) The figure shows a system with three masses on a rotating shaft; $m_{1}=0.1 \mathrm{~kg}$ at 90° and radius $R_{1}=30$ $\mathrm{mm}, \mathrm{m}_{2}=0.2 \mathrm{~kg} @ 240^{\circ}$ and radius $\mathrm{R}_{2}=30 \mathrm{~mm}$, and $\mathrm{m} 3=0.15 \mathrm{~kg} @ 0^{\circ}$ and radius $\mathrm{R}_{3}=20 \mathrm{~mm}$.
Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor.
The balance masses will be placed in planes 4 and 5 at a 30 mm radius.

