Name : _

Student ID # : _____

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ ๑ วันพุธที่ ๑୦ ตุลาคม พ.ศ. ๒๕๕๕ วิชา ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๕ เวลา ดต.๓๐-ด๖.๓๐ น. ห้องสอบ S817, หัวหุ่นยนต์

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

<u>คำสั่ง</u>

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ คะแนนเต็ม ๑๐๐ คะแนน ให้ทำลงในข้อสอบทุกข้อ
- อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
(୦୦	-
ම	୦୦	
តា	୦୦	
¢	୦୦	
ć	୦୦	
รวม	ଭଠଠ	

Student ID # : _____

Name : _____

1) In the mechanism shown, link 2 is having angular velocity of 5 rad/s clockwise, and angular acceleration of 10 rad/s² clockwise. Find the acceleration of point B and angular acceleration of link 3.

Scale 1 mm : 2 mm/s

0v +

Scale 1 mm : 10 mm/s²

0a₊

Name : _____

2) The planetary gear set consists of gears 2, 4, 5, 6 and a planet carrier 3 as shown. If the numbers of teeth of the gears are as follows; $N_2 = 40T$, $N_4 = 15T$, $N_5 = 10T$ and $N_6 = 80T$. The shaft of gear 2 is the input and rotates at 200 rpm clockwise, while gear 6 is fixed. What is the speed and direction of rotation of the planet carrier 3?

Name : _____

3) The mechanism is in static equilibrium at this position, with $P_D = 40$ N acting at point D on link 4 as shown. Use graphical method to determine the magnitude and direction of the vertical load P_B acting at point B on link 3. Also draw force vectors on the given free body diagrams of each link. The dimensions are given as $R_{AO2} = 20$ mm, $R_{AB} = 50$ mm, $R_{AC} = 50$ mm, $R_{BC} = 20$ mm, $R_{O204} = 40$ mm, $R_{CO4} = 40$ mm, $R_{DO4} = 30$ mm, $R_{DC} = 20$ mm.

D

P

0,

Name : _____

4) The mechanism consists of link ABC and 2 frictionless pins at A and B with neglegible weight. Point A is moving at a constant speed 30 mm/s to the right. The velocity and acceleration analysis diagrams are given as shown. If the centroid of link ABC is at B with mass of 2 kg, and $I_g = 3000 \text{ kg.mm}^2$. Determine the force P acting perpendicular to link ABC at C to cause this motion.

Name : ____

5) The figure shows a system with three masses on a rotating shaft; $m_1 = 0.1$ kg at 90^o and radius $R_1 = 30$ mm, $m_2 = 0.2$ kg @ 240^o and radius $R_2 = 30$ mm, and $m_3 = 0.15$ kg @ 0^o and radius $R_3 = 20$ mm. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at a 30 mm radius.

