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Problem 1 (30 Points)

A prestressed cable with tension, T is partially supported by a distributed
stiffness of £ as shown below. The load is a vertical force P acting at the end

free to translate vertically. Axial deformation of the cable is neglected.
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Two boundary conditions of this problem are:

Essential Boundary Condition: w(0)=0
Natural Boundary Condition: 7w (L) =P

Assumethat k=T/I’ and P=T=L=1

Discretize this cable by two linear cable finite elements and determine its
nodal displacements as well as the vertical force at the left end.

Given: the element stiffness equation of a linear cable element with lateral

support is:
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Problem 2 (30 Points)
The governing differential equation for the torsion of a thin-walled section with

warping restraint can be written as follows:
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where E is the modulus of elasticity; G is the shear modulus; J, is the
warping constant; J, is the torsional constant; ¢ is thickness of the section;
and ¢ is the angle through which the cross section rotates. Derive the weak

form, functional form (if possible), and indicate appropriate essential and
natural boundary conditions.

Problem 3 (30 Points)
The governing differential equation is of the form:

—i{EA@ =0;0<x<L
dx dx

For the minimum number of linear elements, give

(a) the boundary conditions on the nodal variables (primary as well as
secondary)

(b) the final condensed finite element equations for the unknowns
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Steel, £, = 30 x 10% psi
Aluminum, £, = 10 x 10°psi
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Problem 4 (30 Points)
Solve the following differential equation for the natural (or Neumann)
boundary conditions:
2
—%—’;’—u=0:0<x<1
X
Natural Boundary Conditions:

(ﬂ) =1 and (-@] =0
dx x=0 dx x=1

Use the uniform mesh of two linear finite elements to solve the problem.

Problem 5 (30 Points)
For the structure shown in Figure below, determine the forces and elongation
in rods AB and CD. Each rod has a cross-sectional area 4 of 0.03 in’ and

modulus of elasticity £ = 30x10° psi .

Please use Penalty Method to cope with the kinematics constraint.
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