

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Exam : Semester | Academic Year : 2012

Date : December 18, 2012 Time : 13:30-16:30

Subject: Unit Operations in Chemical Engineering (230-302)

Room : S201

Name......Student ID.....

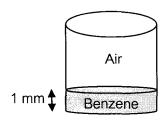
หมายเหตุ

1. ข้อสอบมีทั้งหมด 5 ข้อ ในกระดาษคำถาม 11 หน้า

2. ห้ามการหยิบยืมสิ่งใด ๆ ทั้งสิ้น จากผู้อื่น ๆ เว้นแต่ผู้คุมสอบจะหยิบยืมให้

3. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบออกจากห้องสอบ

- 4. ผู้ที่ประสงค์จะออกจากห้องสอบก่อนหมดเวลาสอบ **แต่ต้องไม่น้อยกว่า 30 นาที** ให้ยกมือขออนุญาตจากผู้คุมสอบก่อนจะลุกจากที่นั่ง
- 5. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใด ๆ ทั้งสิ้น
- 6. ผู้ที่ปฏิบัติเข้าข่ายทุจริตในการสอบ ตามประกาศคณะวิศวกรรมศาสตร์ มีโทษ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา
- 7. ให้ทำข้อสอบโดยใช้ 🗹 ดินสอ 🗹 ปากกา
- 8. ห้ามน้ำ ชีท/ กระดาษ A4/ สมุดโน้ต และอื่นๆ เข้าห้องสอบ **ยกเว้น**
 - หนังสือของ MaCabe W.L., Smith J.C., Harriot P., Unit Operations of Chemical Engineering, 7th Edition, McGraw-Hill, 2005
 - หนังสือของ จุไรวัลย์ รัตนะพิสิฐ, การถ่ายโอนมวลและหลักปฏิบัติการเฉพาะหน่วย
 พื้นฐาน, 2546
 - 🔸 เครื่องคิดเลข และ พจนานุกรม (หรือ talking dictionary)


คำถามข้อที่	1	2	3	4	5	รวมคะแนน
คะแนนเต็ม	40	38	45	47	30	200
คะแนนที่ได้						

Name	 Student ID	
nai ii c	 Olduciil ib	

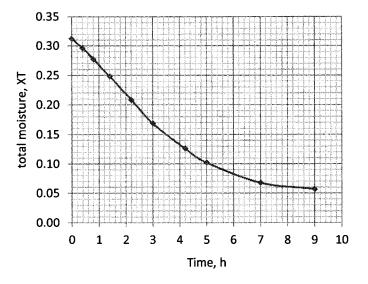
- 1. (40 points) Please answer the following equations in Thai
 - 1.1. (12 points) Describe Fick's first law (i.e. equation, driving force, etc.), and specify the assumption used
 - 1.2. **(6 points) Specify** the equations used to predict diffusivity (or diffusion coefficient) for gas, liquid and solid (one example each)
 - 1.3. **(10 points) Describe** film theory (i.e. how to apply, equation, assumption, etc.)
 - 1.4. (12 points) Describe effect of correction term on molar flux

2. (38 points)

A large of benzene 1 mm deep lies at the bottom of an open tank 5 mm indiameter. The tank temperature is 295 Kelvin and the diffusivity of benzene in air is 8.0×10^{-6} m²/s at this temperature. If the vapor pressure of benzene in the tank is 13.3 kN/m² and diffusion may be assume to take place through a stagnant air film 3 mm thick, how long will it take for the benzene to evaporate? The density of benzene is 880 kg/m³

Name	Student ID
------	------------

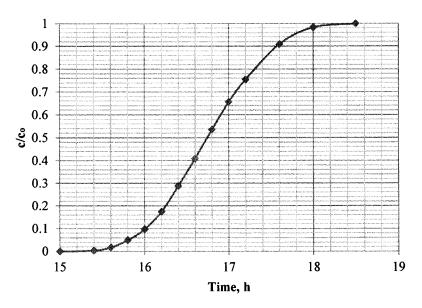
3. **(45 points)**


A 20% NaOH solutions is to be concentrated to 65% in a single – effect evaporator with a vertical tube 6 m in diameter and 15 m long. The feed rate is 60,000 kg/h at 40°C. The boiling point of water at the absolute pressure in vapor space is 110°C. Steam is available at a gauge pressure of 261.8 lb/in².

- 3.1. (10 points) Calculate the evaporator capacity
- 3.2. (30 points) Calculate the evaporator economy
- 3.3. (5 points) Determine boiling point elevation (BPE)

Name Student ID

4. (47 points)


Drying test of fine chemicals has been carried out in an insulated tray. The temperature of the dryer is 60° C. The dry weight of the chemicals is 3.765 kg and the total surface of the solids is 0.186 m². From the experimental results, graph can be plotted as shown below,

- 4.1. (5 points) Please specify that the system is cross circulation drying or through circulation drying?
- 4.2. **(24 points)** Determine equilibrium moisture content (X), critical free moisture content (X_c) , and drying rate in constant rate period $(R_c, kg/m^2.h)$ from graph
- 4.3. (18 points) Calculate drying time to dry the solids from 31.2% to 10% (dry basis)

5. **(30 points)**

Experimental data for adsorption of water from nitrogen stream with fresh molecular sieve are given at $79^{\circ}F$ and 86 psia are plotted as shown in figure below, Nitrogen feed is 29.2 mol/h.ft², and initial moisture content is 1,490 ppm. It is assumed that bulk density of bed is 44.5 lb/ft³, and the bed has a maximum capacity for H₂O of 0.32 lb/lb at that temperature.

- 5.1. (13 points) determine the length of unused bed (ft), if the entire bed length is 1.44 ft
- 5.2. (17 points) determine the saturation capacity (lb H₂O / lb solid)