Student ID..... # DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING PRINCE OF SONGKLA UNIVERSITY Midterm Examination: 1st Semester Academic year: 2011 Date: December 16th, 2012 Time: 9:00 - 12:00 Subject: 230-520 Catalyst Room: S 817 ## ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น หรือ พักการเรียน 1 ภาคการศึกษา และ โทษสูงสุดคือ <u>ให้ออก</u> #### คำสั่ง - 1. ห้ามนำข้อสอบชุดนี้ออกจากห้องสอบ - 2. เป็นการสอบแบบห้ามนำเอกสารเข้าห้องสอบ - 3. อนุญาดให้ใช้เครื่องคำนวณทุกชนิด และใช้ดินสอในการทำข้อสอบ - 4. ห้ามพูดคุยหรือหยิบยืมเอกสาร เครื่องคำนวณ หรือเครื่องเขียน - 5. หากท่านทำข้อสอบเสร็จก่อนหมดเวลา ให้นั่งอยู่กับที่แล้วยกมือแจ้งกรรมการคุมสอบ ### ข้อสอบมี 7 ข้อ 9 หน้า (รวมปก) | Problem | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | |---------|----|----|----|----|----|----|----|-------| | Score | 15 | 35 | 20 | 20 | 15 | 20 | 20 | 145 | | You got | | | | | | | | | Sukritthira Ratanawilai December 2012 | Student ID | Page #2 out of | |--|----------------| | (15 points; 3 points/each subject) Give a brief definition or descriptio
example (when requested) of the following subjects. | n and an | | 1.1 Elementary reaction (give example) | | | | | | | | | | | | 1.2 Bulk density, Solid density | | | | | | | | | | | | 1.3 Sledgehammer approach and Feather approach | | | | | | | | | | | | 1.4 Textural promoter | | | | | | | | | | | | 1.5 Explain Fischer-Tropsch reaction (give example). | | | 2. | (35 points; 5 points/each question) Find the answer of each question | |---|--| | 2.1 | What are cacination and reduction; how different? | | | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | | | | | | | 2.2 | | | ۷.۷ | What are physisorption and chemisorption; how different? | | •••••• | | | ••••• | 2.3 | Explain the important points of catalyst? | | ••••• | | | ••••• | ······ | NAME of the second seco | | 2.4 | What are co-precipitation and impregnation; how different? | | • • • • • • • • | | | • | | | | | | | | | | | | | | | ••••• | | | • • • • • • • | ······· | | | | Page #3 out of 9 Student ID..... | 2.5 | What | are | "Langmui | r Isotherm | n" and | "Langmuir- | Hinshelwood | Model" | explain | |---|---|---|---|---|---|-------------|---|---|---------| | | includi | ing ea | ch assum | nption? | | | | | | | | ••••• | ••••• | ••••• | | ••••• | ••••• | | | | | ••••• | ••••• | •••••• | ••••• | ••••• | | •••••• | | | ••••• | | | ••••• | • | ••••• | | ••••• | •••••• | | | | | ••••• | •••••• | • | | | | | ••••• | | | | ••••• | •••••• | ••••• | •••••• | | ••••• | ••••• | | | | | ••••• | ••••• | • | • | •••••• | | ••••• | | | ••••• | | ••••• | ••••• | | ••••• | | ••••• | | | | ••••• | | •••••• | •••••• | • | • | | | | | | ••••• | | | ••••• | | •••••• | | • | | | | •••••• | | | • | • | • | ••••• | ••••• | | ••••• | | ••••• | | •••••• | ••••• | ••••• | • | •••••• | | | ••••• | | ••••• | | | | | | •••••• | | | ••••• | | ••••• | | 2.6 | What a | are th | e criteria i | for selection | n a sup | port? | | | | | •••••• | • | • | • | ••••• | | | | | | | ••••• | • | | | ••••• | • | | ••••• | | | | | | | | | | •••••••••• | | | ••••• | | | • | | | | • | ••••• | | | | | | • | | | ••••••••••••••••••••••••••••••••••••••• | | | ••••••••••••••••••••••••••••••••••••••• | | | | •••••• | • | | | | • | ••••• | ••••• | | | | ••••• | • | • | | •••••• | • | | | | | | •••••• | | • | | | •••••• | | | ••••• | | | ••••• | •••••• | ••••• | | •••••• | • | | •••••• | | | | •••••• | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | | ••••• | • | ••••• | ••••• | •••••• | ••••• | ••••• | | • | | | •••••• | • | • | | •••••• | ••••• | ••••• | | | | | 2.7 | Why T | ransit | ion metals | s and their | compo | unds are go | od for use as | a catalys | st? | | ••••• | | | | ••••• | | | ••••• | | | | • | • | ••••• | ••••• | | | ••••• | •••••• | ••••• | | | | •••••• | • | ••••• | • | ••••• | | ••••••• | ••••• | | | ••••• | •••••• | | | | | ••••• | ••••• | • | | | •••••• | ••••• | | ••••• | | •••••• | ••••• | •••••• | | | | •••••• | | ••••• | ••••• | | • | •••••• | ••••• | • | | | ••••• | ••••• | | ••••• | | | •••••• | •••••• | | | | | | ••••• | •••••• | | • | ••••• | ••••• | ••••• | ••••• | | ••••• | | | | ••••• | ••••• | ••••• | ••••• | | | | •••••• | ••••• | • | | | ••••• | | | | | Page #4 out of 9 Student ID..... | Stud | ent ID | Page #5 out of 9 | |-----------|--|---------------------------| | | (20 points) Based on the providing conditions, choose the best support wing choices. | from the | | Sup | port choices: Silica, Alumina, Zeolite, Activated carbon, Titania | | | | Can use at high temperature and high pressure without sintering and str | | | | A porous structure that can exchange cations, such as Na [†] , K [†] , and Ca ² | [⁺] used to call | | | High chemical stability, low cost, good for photocatalysis, have different on temperature | phase depend | | 3.4 l | Usually in the form of eta -, γ -, and $lpha$ | | | | Can use as an acid catalyst in petrochemical reaction especially for continue weight of desired product | rol molecular | | 3.6 (| Can use for odor removal | | | C | Use as additive in polymer process, easily to evaporate at higher temper | rature and very | | | Have solid phase at room temperature | | | 3.9 (| Can prepare in a form of "Nano" particle | | | 3.10
v | If you would like to make your own catalyst which suppot you would why | choose and | | • | | ••••• | 4. (20 points) What is the rate of formation of methanol in mol/s g of catalyst (metal plus support) $CO + 2H_2 \longrightarrow CH_3OH$ In this reaction, uses 1 wt% Cu on ZnO as catalyst, the catalyst dispersion percentage of atoms exposed, determined from hydrogen chemisorption, was found to be 48%. At a pressure of 988 kPa and a temperature of 475 K, TOF of 0.05 s⁻¹ was reported for CH₃OH Information: - MW of Cu 63.5 g/mol - Avogadro's number = 6.022×10^{23} mol⁻¹ | Student | ID |
 | | |---------|----|------|--| Page #7 out of 9 - 5. (15 points) Derive the Langmuir adsorption and concentration of adsorbed and vacant site (θ) for the following cases: - 5.1 Dissociate adsorption of NO₂ (5 points) 5.2 A and B has different surface site as Δ and \blacksquare site, respectively. A and B react inorder to produce C on \blacksquare site. (10 points) $$A(\Delta) + B(\blacksquare) \rightarrow C(\blacksquare)$$ 6. (20 points) NO oxidized with O_2 on Cu-ZSM-5 is occurred as in Eq-1. Propose kinetics mechanism and derive a rate expression by using Eley-Rideal model. $$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$$ Eq-1 7. (20 points) you would like to make 50 grams of 0.5% wt of Pt on TiO₂. Calculate the amount of platinum-oxide (PtO₂), amount of solvent and amount of TiO₂. Inaddition explain step by step for making this catalyst. #### Information: - MW of Pt 195 g/mol, MW of O 16 g/mol, MW of K 39 g/mol MW of H 1 g/mol, MW of Ti 48 g/mol, MW of Na 23 g/mol - Wetness point of TiO₂ = 2.7 cc of KOH /g of TiO₂ - Wetness point of TiO_2 = 2.9 cc of NaOH /g of TiO_2 - Solution of KOH and NaOH were prepared and ready to use and ${\rm PtO_2}$ is better dissolve in NaOH - Boiling point of KOH = 105 °C, Boiling point of NaOH = 120 °C