คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๒ วันศุกร์ที่ ๒๑ ธันวาคม พ.ศ. ๒๕๕๕ รายวิชา ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๕ เวลา ๙.๐๐-๑๒.๐๐ น. ห้องสอบ Robot

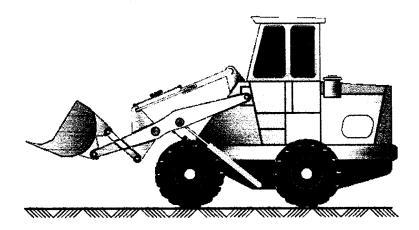
ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

<u>คำสั่ง</u>

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

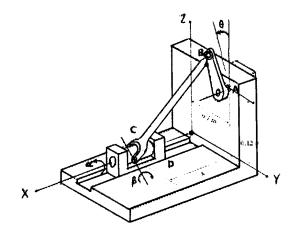
รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	90.	
Jeo)end.	
នា	рао	
ھ	Jac	
ď	Jao	
รวม	900	


Name		
Hailie	•	

Student ID # : _____

1) (a) (3 points) What is the name of the mechanisms shown below?

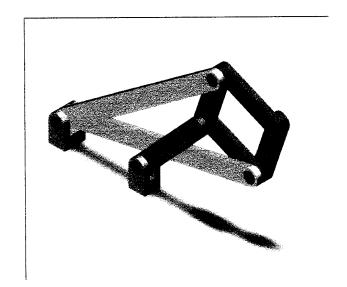

2) (b) (4 points) Determine the mobility of the mechanism to control the bucket of the earth-mover truck shown. Assume that the truck is the fixed frame (that is the wheels are not moving). Show your calculation.

Name		
Harrie	٠	

Student ID # :

(c) (5 points) In the figure shown is a spatial mechanism with 5 links and 1 DOF.

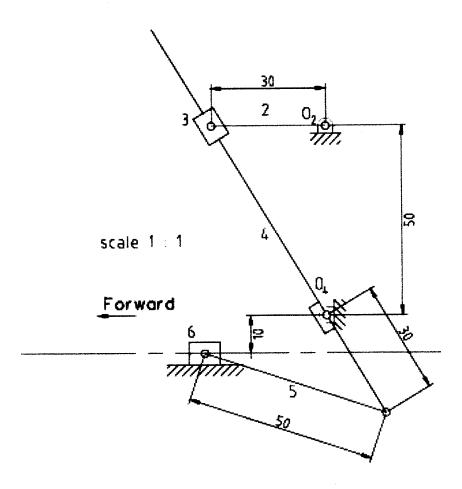
How many joints with 1 DOF are there?______


How many joints with 2 DOF are there?______

How many joints with 3 DOF are there?______

How many joints with 4 DOF are there?______

How many joints with 5 DOF are there?______

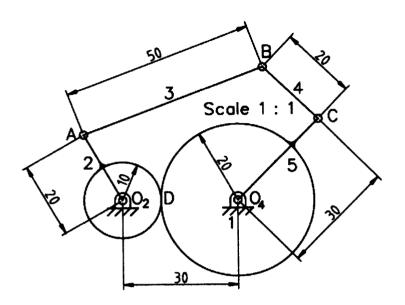

(d) (3 points) The mechanism shown in the figure is called Peaucellier Mechanism. What is it used for ?

Name	:	
------	---	--

Student ID # : _____

2) (25 points) The mechanism shown is a six-bar quick-return mechanism. The fixed pin joints O_2 and O_4 are 50 mm apart. Link 2 is the input crank and link 6 is the output slider. Link 4 is fixed at O_4 with block 3 sliding on it.

- (a) Draw the mechanism when link 6 is at its both limit positions.
- (b) If link 2 is rotating with a constant speed, assuming the forward motion of link 6 is to the left, which direction of ω_2 to make it a quick-return?

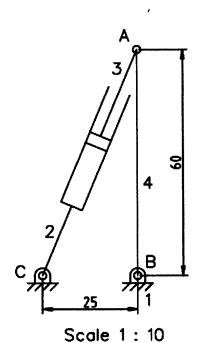

(c) What is the stroke of this
mechanism ?
(d) Is the motion of link 4 oscillating o
reciprocating ?
(e) Is the motion of link 6 oscillating of
reciprocating ?
(f) Determine the time ratio between
advance stroke and return stroke.

0₂

O ^r	
ō	111

Name :	Student ID # :

3) (20 points) In the geared 5 bar mechanism shown, link 2 and 4 are connected with rolling contact at point D. Link 2 is rotating with the speed of 2 rad/s counterclockwise. Use the graphical method to do the velocity analysis, and determine the angular velocities of links 3, 4, and 5.

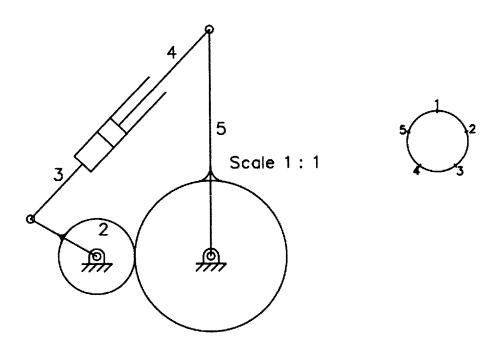

4

Scale 1 mm : 1 mm/s

Name:	
maille.	

Student ID # :

4) (20 points) For the mechanism shown below, link 4 is rotating with an angular velocity of 13 rad/s clockwise. Determine the angular velocities of link 2 and link 3, using graphical method. What is the speed of the piston 3 relative to the cylinder 2. (Hint: Use point A to determine the apparent velocity)


₊0v

1 mm : 100 mm/s

Name		
Hailie	•	

Student ID #	:	
--------------	---	--

5) (20 points) For the gear 5 bar mechanism shown, locate all the instantaneous centers of velocity, except for P13. If link 2 is rotating with an angular velocity of 2 rad/s counterclockwise, use the IC point P24 to find the angular velocity of link 4.

