Name		_
Name	10	

Prince of Songkla University Faculty of Engineering

Final Test	
20 February 2012	
215-274 Numerical Methods for Mechanical Engineering	g

Semester 2/2012
09:00-12:00
Room: S101, S203

Name _	ID

Direction:

- 1. All types of calculator, and dictionary are permitted.
- 2. There are totally 4 problems.
- 3. One sheet of hand-written A4 paper is allowed. No photocopy!!

Perapong Tekasakul Kittinan Maliwan

Instructors

Problem No.	Full score	Your mark
1	10	
2	20	
3	15	
4	15	
Total	60	

1. Solve the following problem numerically from t = 0 to 3:

$$\frac{dy}{dt} = -y + t^2 \qquad y(0) = 1$$

Use the third-order RK method with a step size of 0.5.

2. Use the shooting method to solve

$$\frac{d^2y}{dx^2} - 2y = 8x(9-x)$$

Obtain a solution for boundary conditions: y(0) = 0 and y(9) = 0 with a step size of 3. Use Euler method to solve the 1st-order ODEs obtained from the 2nd-order ODE. First, guess z(0) = y'(0) = 4 and then guess z(0) = y'(0) = -24.

3. Use Liebmann's method to solve for the temperature of the square heated plate in the figure. Use a relaxation factor of 1.2, iterate twice and determine approximate error at each node.

4. Use the simple implicit method to solve for the temperature distribution of a long, thin rod with a length of 10 cm and the following values: $k' = 0.49 \text{ cal/(s} \cdot \text{cm °C)}$, $\Delta x = 2 \text{ cm}$, and $\Delta t = 0.1 \text{ s}$. At t = 0, the temperature of the rod is zero and the boundary conditions are fixed at T(0) = 100 °C and the derivative at x = 10 is equal to zero for all time. Note that the rod is aluminum with C = 0.2174 cal/(g.°C) and $\rho = 2.7g / \text{cm}^3$. Therefore, $k = 0.49/(2.7 \cdot 0.2174) = 0.835 \text{ cm}^2/\text{s}$ and $\lambda = 0.835(0.1)/(2)^2 = 0.020875$.