[Page	1	of	61
1, 490	•	٠.	~,

lame :	 Student ID # :	

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ ๒ วันพุธที่ ๒๐ กุมภาพันธ์ พ.ศ. ๒๕๕๖ รายวิชา ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๕ เวลา ๑๓.๓๐-๑๖.๓๐ น. ห้องสอบ Robot

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

<u>คำสั่ง</u>

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	Jao	
βo	k no	
ព	рао	
æ	ja o	
ď)ao	
รวม	900	

1) An offset slider-crank mechanism is shown in the figure. At this position the angular velocity and acceleration of link 2 are $\omega_2 = 2 \, rad \, l \, s$ and $\alpha_2 = 2 \, rad \, l \, s^2$ both counterclockwise. The velocity analysis is given as shown. Determine the acceleration of slider 4, $\vec{a_B}$, and the angular acceleration of link 3, α_3 .

Scale 1 mm : 2 mm/s^2

2) (a) Determine the speed and direction of the output gear, if the input gear is rotating at 1800 rpm

(b) For the gear train shown, determine if the input shaft 1 is rotating at 100 rpm ccw, determine the speed and direction of output shaft 2 and gear D. The numbers given are the teeth of each gear.

3) For the mechanism shown, if force $P=100\ N$ is applied to the slider 8 as shown. Determine the magnitude and direction of M_{12} to keep it in equilibrium. Also show the constraint forces on each link.

4) Link 2 of the mechanism shown has a mass of m_2 = 0.5 kg, and link 3 has a mass m_3 = 0.4 kg and moment of inertia about its centroid G_3 as I_{G3} = 450 kg.mm². Link 2 is moving to the right with a constant speed of 40 mm/s. At this instance, a_{G3} = 46.21 mm/s² (direction as shown in the figure) and α_3 = 1.23 rad/s² clockwise. The contact at each slider joint has no friction. Draw the inertia force of link 3 and determine force P acting on link 2. (Link 2 has no acceleration, therefore it has no inertia force).

[Page 6 c	of	6]
-----------	----	----

5) The figure shows a system with two weights on a rotating shaft. $W_1 = 10 \text{ lb } @ 90^{\circ}$ at a 3-in radius and $W_2 = 7 \text{ lb } @ 240^{\circ}$ at a 3-in radius. Determine the magnitudes and angles of the balance weights needed to dynamically balance the system. The balance weights in plane 3 and 4 are placed at 3 inch radius.

