4	م م
ช่อ	รหสรหสรหสรหส

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I Academic year: 2013

Date: 1 August, 2013 Time: 09.00 - 12.00

Subject: 231-201 Material and Energy Balances Room: Robot

รายละเอียดการทำข้อสอบ

1. ห้ามนำข้อสอบบางส่วนหรือทั้งหมคออกจากห้องสอบ

2. สามารถนำเครื่องคิดเลข Dictionary หนังสือหรือเอกสารทุกชนิดเข้าห้องสอบได้

3. ใช้ดินสอหรือปากกาในการทำข้อสอบได้ (เขียนให้อ่านได้ชัดเจน)

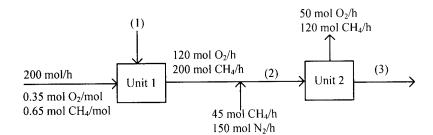
4. ข้อสอบมีทั้งหมด 6 ข้อ มีจำนวนทั้งหมด 7 หน้า

5. อนุญาตให้ทำข้อสอบค้านหลังกระคาษคำตอบแต่ละข้อได้

6. กรอกชื่อและรหัสนักศึกษาด้านหน้าข้อสอบและกรอกรหัสในข้อสอบทุกหน้าของกระดาษ

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	15	
2	25	
3	15	
4	25	
5	20	
6	20	
รวม	120	

อ.จันทิมา ชั่งสิริพร ผู้ออกข้อสอบ


~ 1				
Code	 	 	 	

1. Two streams of H_2SO_2 acid solution containing 40.0% H_2SO_2 and 15% H_2SO_2 by mass are fed to mixer at flow rate of 20 kg/h and 30 kg/h, respectively. It is desired to produce 35.0% H_2SO_2 solution by mixing the feeds with pure water stream in the mixer for preparing the product. (15 marks)

- a) Basis and draw the diagram of this process.
- b) Calculate the ratios (kg water feed/kg product).

O 1																
Code	 	 	 	٠.			٠.			 ٠	٠.	٠	٠.	٠.	٠	•

2. A labeled flowchart of a continuous steady state two-unit process is shown below. Each stream contains gas at different proportions. Three streams whose flow rates and/or compositions are not known as labeled (1), (2), and (3). Calculate the streams whose flow rates and/or compositions are not known. (25 marks)

Code																								
Code	 					٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠.	

- 3. If you feed 280 grams/min of N_2 gas and 50 grams/min of H_2 into a reactor. Draw the diagram of this process and answer the following question: $(N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \ (15 \text{ marks})$
 - a) What is the limiting reactant?
 - b) What is the % excess of reactant?
 - c) What is the maximum flow rate of NH3 (grams/min) that can be produced?

Code												٠.								
------	--	--	--	--	--	--	--	--	--	--	--	----	--	--	--	--	--	--	--	--

4. Chemical reaction to produce ethylene (C_2H_4) from ethane (C_2H_6) can be shown as following: (25 marks)

$$C_2H_6 \rightarrow C_2H_4 + H_2 \tag{1}$$

$$C_2H_4 + C_2H_6 \rightarrow C_3H_6 + CH_4$$
 (2)

The reactions occur by feed gas at flow rate of 300 mol/h. The feed contains 75.0 mole% C_2H_6 , 20.0 mole% H_2 , and balance N_2 . Fractional conversion of C_2H_6 is 0.75 and percentage yield of C_2H_4 (main product) is 65%.

- a) Draw the process diagram of this reactor.
- b) Calculate flow rate of each gas in the product stream by extent of reaction?
- c) The selectivity of C_2H_4 to C_3H_6 ?

~ 1																
Code	 						 		٠			•	٠	٠	 	

5. Ethane (C_2H_6) 140 mol/h and air (containing moisture 5 mole%, O_2 21%, and the balance N_2) at flow rate of 3000 mol/h are fed into combustion reactor. Percentage conversion of the ethane is 85%. (20 marks)

$$(\mathrm{C_2H_6} + \tfrac{7}{2}\,\mathrm{O_2} \to 2\mathrm{CO_2} + 3\mathrm{H_2O})$$

Calculate:

- a) Draw the process diagram of this combustion reactor.
- b) The percent excess air.
- c) Molar composition of the stack gas on the dry basis.

Code																					
Couc	٠.		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠								٠.	

- 6. Propane gas (C_3H_8) and nitrogen stream (measured rate of 50 m³ (STP)/min) are fed to the compressor. The combined gases are compressed to a total pressure P = 5.5 atm gauge at a temperature of 250° C. The partial pressure of propane in this outlet stream is $p_a = 550$ mmHg. Atmospheric pressure is 760 mmHg. (20 marks)
- a) Draw the diagram of this gas compression process.
- b) What is the molar composition of the stream leaving the compressor?
- c) What is the propane feed flow rate to the compressor?