PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Midterm Examination: Semester 1 Academic Year: 2013

Date: 3 August 2013 **Time**: 13.30 - 16.30 (3 hours)

Subject Number: 242-530 Room: Robot

Subject Title: Parallel and Distributed Computing

Exam Duration: 3 hours

This paper has 15 pages, 8 questions and 165 marks (30%).

Authorised Materials:

• Writing instruments (e.g. pens, pencils).

• Textbooks, a notebook, handouts, and dictionaries are permitted.

Instructions to Students:

• Scan all the questions before answering so that you can manage your time better.

• Answers must be written in Thai.

• Write your name and ID on every page.

• Any unreadable parts will be considered wrong.

When drawing diagrams or coding, use good layout, and short comments; marks will not be deducted for minor syntax errors.

Cheating in this examination

Lowest punishment:

Failed in this subject and courses dropped for next

semester.

Highest punishment:

Expelled.

NO	Time (Min)	Marks	Collected	NO	Time (Min)	Marks	Collected
1	55	55		5	15	12	
2	15	12		6	10	8	
3	20	20		7	15	12	
4	20	21		8	20	20	
Total	170	160			30%		.1

O	uestion	1

(52 marks; 55 minutes)

Answer the following questions.

a)	What are disad	vantages of Mar	ual and Autor	matic Paralleli	zation? ((4 marks)
----	----------------	-----------------	---------------	-----------------	-----------	-----------

· -	and Automatic Parallelization? (4 marks)
Manual Parallelization	Automatic Parallelization
b) Compare latency and bandwidth.	(2 marks)
Latency	Bandwidth
c) What are the differences bet	turon and any house
c) What are the differences bet communications?	tween synchronous and asynchronous (2 marks)
Synchronous Communication	Asynchronous Communication

d)	The first step in developing parallel software is to first understand the problem that you wish to solve in parallel. You need to determine whether or not the problem can actually be parallelized. Suppose that you have a serial program and want to parallelize it. What are the <i>three</i> necessary things to be <i>identified</i> in the program? Also explain them clearly. (3 marks)
_	
- e)	After finding the <i>bottlenecks</i> and <i>inhibitors</i> of the program, what can be done to solve the problems? (2 marks)
- f) - -	Explain the type of problems called "embarrassingly parallel" and also give examples. (3 marks)
 g)	List at least 6 factors to consider when designing your program's inter-task communications. (3 marks)
-	

ID_

h)	Compare point-to-point and collective	communications and give examples of
	MPI commands used in each type.	(4 marks)

Point-to-point Communication	Collective Communication
What is barrier synchronization?	(2 marks)
	'.1
j) Explain how <i>lock</i> and <i>semaphore</i> invol	ve with synchronization? (2 marks)
k) Compare <i>loop independent data deper</i> by giving an example of code fragmen	ndence and loop carried data dependent t for each type. (2 marks)
Loop independent data dependence	Loop carried data dependence
1	
1) What is granularity?	(2 marks)
1) What is granularity?	
1) What is granularity?	
1) What is granularity?	
l) What is granularity?	

ID_

m) Compare fine-grain and coarse-grain Parallelism. (4 marks)

Fine-grain Parallelism	Coarse-grain Parallelism
	(4 - 1-)
) What is <i>load balancing</i> ? Why is i	it important? (4 marks)
o) Give examples of classes of prob	olems that result in load imbalances even if d
is evenly distributed among tasks	s. (3 marks)
	nuch more complex than corresponding se
applications in general?	(2 marks)
q) Explain how the costs of comple	exity are measured. (4 marks)
<u>.</u>	

List 4 hardware factors that play a significant	cant role in scalability. (4	marks
estion 2	(12 marks; 15 mi	nutes)
e Amdahl's law to explain the following qu	estions	
performance of a parallel program? Give a		

	does problem size play an important role in parallel programs in terms of mance? Give an example. (6 marks)
 	
Question	
	following statements, tell which are true (T) or false (F).
a)	Often it is inefficient to package small messages into a larger message thus decreasing the effective communications bandwidth.
b)	Communications frequently require some type of synchronization between tasks, which can result in tasks spending time "waiting" instead of doing work.
c)	Competing communication traffic can saturate the available network bandwidth, further solving performance problems.
d)	Sending many small messages can cause latency to dominat communication overheads.
e)	Asynchronous communication operations can decrease overall program performance.
f)	A data dependence results from multiple use of the same location(s) i storage by different tasks.
g)	Dependencies are important to parallel programming because they are one of the primary inhibitors to parallelism.
h)	Coarse-grain parallelism facilitates load balancing.
i)	If granularity is too fine, it is possible that the overhead required for communications and synchronization between tasks takes shorter than the computation.

k) The most efficient granularity is dependent on the algorithm and th hardware environment in which it runs. 1) When the amount of work each task will perform is intentionally variable, or is unable to be predicted, it may be helpful to use a schedule - task pool approach. m) Periods of computation are typically separated from periods of communication by synchronization events. n) I/O operations are generally regarded as hotspots to parallelism. o) Problems with a fixed percentage of parallel time are more scalable that problems that increase the percentage of parallel time with their size. p) Uniform Memory Access (UMA) requires identical processors. q) Non-Uniform Memory Access (NUMA) provides equal access time that all processors. r) The Tree Switched Network Topology performs well if there is a small amount of locality in communication. s) Cache coherent means if one processor updates a location in share memory, all the other processors know about the update t) Shared Medium (an interconnection media type) enables multiply messages to be sent simultaneously and allow scaling of network to accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessor (SMP). (6 marks) Parallel Vector Processor Symmetric Multiprocessors			
variable, or is unable to be predicted, it may be helpful to use a schedule - task pool approach. m) Periods of computation are typically separated from periods of communication by synchronization events. n) I/O operations are generally regarded as hotspots to parallelism. o) Problems with a fixed percentage of parallel time are more scalable that problems that increase the percentage of parallel time with their size. p) Uniform Memory Access (UMA) requires identical processors. q) Non-Uniform Memory Access (NUMA) provides equal access time to all processors r) The Tree Switched Network Topology performs well if there is a small amount of locality in communication. s) Cache coherent means if one processor updates a location in share memory, all the other processors know about the update t) Shared Medium (an interconnection media type) enables multipmessages to be sent simultaneously and allow scaling of network to accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocesso (SMP).	k)		
communication by synchronization events.	1)	variable, or is unable to be pre-	each task will perform is intentionally dicted, it may be helpful to use a scheduler
	m)	Periods of computation are communication by synchroniza	e typically separated from periods of ation events.
problems that increase the percentage of parallel time with their size.	n)	I/O operations are generally re-	garded as hotspots to parallelism.
q) Non-Uniform Memory Access (NUMA) provides equal access time to all processorsr) The Tree Switched Network Topology performs well if there is a small amount of locality in communications) Cache coherent means if one processor updates a location in share memory, all the other processors know about the updatet) Shared Medium (an interconnection media type) enables multiple messages to be sent simultaneously and allow scaling of network to accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessor (SMP).	o)	Problems with a fixed percentage problems that increase the percentage and the percentage are the percentage and the percentage are the percentage	age of parallel time are more scalable than centage of parallel time with their size.
all processors	p)	Uniform Memory Access (U	JMA) requires identical processors.
amount of locality in communication. S) Cache coherent means if one processor updates a location in share memory, all the other processors know about the update T) Shared Medium (an interconnection media type) enables multiply messages to be sent simultaneously and allow scaling of network accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessor (SMP).	q)		ss (NUMA) provides equal access time to
memory, all the other processors know about the update t) Shared Medium (an interconnection media type) enables multiply messages to be sent simultaneously and allow scaling of network accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessor (SMP).	r)		
messages to be sent simultaneously and allow scaling of network to accommodate increase in processors. Question 4 (21 marks; 20 minutes) Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessor (SMP).	s)		
Answer the following questions. a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocesso (SMP).	t)	messages to be sent simulta	neously and allow scaling of network to
a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocesso (SMP).	Question	n 4	(21 marks; 20 minutes)
(SMP). (6 marks)	Answer	the following questions.	
Parallel Vector Processor Symmetric Multiprocessors			
	Pa	rallel Vector Processor	Symmetric Multiprocessors

Name

b) Compare the advantages and disadvantages of Shared Memory Model and Distributed Memory Model. (6 marks)

Distributed Memory Model.	(6 marks)
Shared Memory Model	Distributed Memory Model
·	
c) Compare OpenMP and MPI.	(6 marks)
OpenMP	MPI

Name______ID_____

estion 5	(12 marks; 15 minutes
Tell the advantages and disadvantages of the computers:	following ways to program pa
a) Extend compilers	(3 marks)
b) Extend languages	(3 marks)
c) Add parallel language layer on top of s	sequential language (3 marks)
d) Define Actallar many morellal language as	ad accompilar avatam (2 marks)
d) Define totally new parallel language as	iu compiler system (3 marks)

iestion 6	(8 marks; 10 minutes)	
ompare the following parallel programming models:		
a) Shared Memory Model	(2 marks)	
b) Threads Model	(2 marks)	
c) Message Passing Model	(2 marks)	
d) Data Parallel Model	(2 marks)	
·		
Name	ID	

Question 7	(12 marks; 15 minutes)	
<i>Tell</i> whether the following equations are parallelizable or non-parallelizable. Also show how to <i>decompose</i> the parts of the equations.		
a)		
do i=0,n		
a(i+1) = a(i) * a(i-1)		
enddo		
b)		
w = a[0] * b[0];		
for (i=1; i <n; i++)="" td="" {<=""><td></td></n;>		
c[i] = w;		
w = a[i] * b[i];		
}		
,		
c) $F(x) = a*M(x) + b*N(x) - c*O(x)$		
d) $H(i) = F(i)i + G(i)$		
e) $F(m,n) = (m+1)! + (n-1)!$		

Name______ID____

Questio	
proces	e following OpenMP and MPI code fragments, 1) explain how the code sed and what would be the result for each code fragment 2) if there wrong with the code, correct it or suggest better code fragment.
ı)	
if (z	< min)
#pro	agma omp critical
m	in = z;
 o)	
)	int t id, num_t;
	#pragma omp parallel num threads(3)
	{
	num_t = omp_get_num_threads();
	t_id = omp_get_thread_num();
	printf("Hello world from thread ID %d/%d\n",t_id,num_t);
	}

)	
#pragma oi	mp parallel for
for (i=0; i	i <number; i++)<="" th=""></number;>
{	
	sult+=(sin(data[i])-cos(data[i]))/tan(data[i]);
}	
	esult = % f (n'', result);
pring(Re	successions,
)	
pragma omp	parallel
{	
•	#pragma omp section
	w = alpha();
	#pragma omp section
	v = beta();
	#pragma omp section
,	y = delta();
}	

_ID__

e)		
	MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);	
	if (n!=0)	
	{	
	mysum = 0;	
	$for (i = process_id + 1; i \le n; i + = number_of_processes)$	
	{	
	mysum +=i;	
	}	
	MPI_Reduce(&mysum, ∑, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM WORLD);	0,

_		
_		

----End of Examination----

Pichaya Tandayya Lecturer

"It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change."

By Charles Darwin

Name	ID