PRINCE OF SONGKLA UNIVERSITY
FACULTY OF ENGINEERING

Academic Year: 2013
Time: 13.30 - 16.30 (3 hours)
Room: Robot

Midterm Examination: Semester 1

Date: 3 August 2013

Subject Number: 242-530

Subject Title: Parallel and Distributed Computing

Exam Duration: 3 hours

This paper has 15 pages, 8 questions and 165 marks (30%).

Authorised Materials:
e Writing instruments (e.g. pens, pencils).
e Textbooks, a notebook, handouts, and dictionaries are permitted.

Instructions to Students:

Scan all the questions before answering so that you can manage your time better.

e Answers must be written in Thai.

Write your name and ID on every page.
e Any unreadable parts will be considered wrong.
When drawing diagrams or coding, use good layout, and short comments;

marks will not be deducted for minor syntax errors.

Cheating in this examination

Lowest punishment: Failed in this subject and courses dropped for next

semester.
Highest punishment: Expelled.
NO Time (Min) Marks Collected NO Time (Min) Marks Collected
1 55 55 5 15 12
2 15 12 6 10 8
3 20 20 7 15 12
4 20 21 8 20 20
Total 170 160 30%

Question 1 (52 marks; 55 minutes)

Answer the following questions.

a) What are disadvantages of Manual and Automatic Parallelization? (4 marks)

Manual Parallelization Automatic Parallelization
b) Compare latency and bandwidth. (2 marks)
Latency Bandwidth

c¢) What are the differences between synchronous and asynchronous
communications? (2 marks)

Synchronous Communication Asynchronous Communication

Name 1D

d) The first step in developing parallel software is to first understand the problem
that you wish to solve in parallel. You need to determine whether or not the
problem can actually be parallelized. Suppose that you have a serial program
and want to parallelize it. What are the three necessary things to be identified in
the program? Also explain them clearly. (3 marks)

e) After finding the bottlenecks and inhibitors of the program, what can be done to
solve the problems? (2 marks)

f) Explain the type of problems called “embarrassingly parallel” and also give
examples. (3 marks)

g) List at least 6 factors to consider when designing your program's inter-task
communications. (3 marks)

Name ID

h) Compare point-to-point and collective communications and give examples of

MPI commands used in each type. (4 marks)
Point-to-point Communication Collective Communication
i) What is barrier synchronization? (2 marks)
j) Explain how lock and semaphore involve with synchronization? (2 marks)

k) Compare loop independent data dependence and loop carried data dependence

by giving an example of code fragment for each type. (2 marks)
Loop independent data dependence Loop carried data dependence
1) What is granularity? (2 marks)

Name ID

m) Compare fine-grain and coarse-grain Parallelism. (4 marks)

Fine-grain Parallelism Coarse-grain Parallelism

n) What is load balancing? Why is it important? (4 marks)

0) Give examples of classes of problems that result in load imbalances even if data
is evenly distributed among tasks. (3 marks)

p) Why are parallel applications much more complex than corresponding serial
applications in general? (2 marks)

q) Explain how the costs of complexity are measured. (4 marks)

Name ID

r) Explain why more CPU time is required when the primary intent of parallel
programming is to decrease the execution wall clock time? (3 marks)

s) List 4 hardware factors that play a significant role in scalability. (4 marks)

Question 2 (12 marks; 15 minutes)

Use Amdahl’s law to explain the following questions

a) Why is it that simply adding more machines does not always scale the
performance of a parallel program? Give an example. (6 marks)

Name D

b) Why does problem size play an important role in parallel programs in terms of
performance? Give an example. (6 marks)

Question 3 (20 marks; 20 minutes)

From the following statements, tell which are true (T) or false (F).

)

)

Name

Often it is inefficient to package small messages into a larger message,
thus decreasing the effective communications bandwidth.

Communications frequently require some type of synchronization
between tasks, which can result in tasks spending time "waiting" instead
of doing work.

Competing communication traffic can saturate the available network
bandwidth, further solving performance problems.

Sending many small messages can cause latency to dominate
communication overheads.

Asynchronous communication operations can decrease overall program
performance.

A data dependence results from multiple use of the same location(s) in
storage by different tasks.

Dependencies are important to parallel programming because they are
one of the primary inhibitors to parallelism.

Coarse-grain parallelism facilitates load balancing.

If granularity is too fine, it is possible that the overhead required for
communications and synchronization between tasks takes shorter than the
computation.

Fine-grain parallelism implies high communication overhead and more
opportunity for performance enhancement.

k) The most efficient granularity is dependent on the algorithm and the
hardware environment in which it runs.

1) When the amount of work each task will perform is intentionally
variable, or is unable to be predicted, it may be helpful to use a scheduler
- task pool approach.

m) Periods of computation are typically separated from periods of
communication by synchronization events.

n) I/O operations are generally regarded as hotspots to parallelism.

0) Problems with a fixed percentage of parallel time are more scalable than
problems that increase the percentage of parallel time with their size.

p) Uniform Memory Access (UMA) requires identical processors.

q) Non-Uniform Memory Access (NUMA) provides equal access time to
all processors

1) The Tree Switched Network Topology performs well if there is a small
amount of locality in communication.

s) Cache coherent means if one processor updates a location in shared
memory, all the other processors know about the update..

t) Shared Medium (an interconnection media type) enables multiple
messages to be sent simultaneously and allow scaling of network to
accommodate increase in processors.

Question 4 (21 marks; 20 minutes)
Answer the following questions.

a) Compare Parallel Vector Processor (PVP) and Symmetric Multiprocessors
(SMP). (6 marks)

Parallel Vector Processor Symmetric Multiprocessors

Name D

b) Compare the advantages and disadvantages of Shared Memory Model and

Distributed Memory Model. (6 marks)
Shared Memory Model Distributed Memory Model
¢) Compare OpenMP and MPL (6 marks)
OpenMP MPI

Name D

10

d) List the significant constraints in building faster serial computers. (3 marks)

Question 5 (12 marks; 15 minutes)

Tell the advantages and disadvantages of the following ways to program parallel
computers:

a) Extend compilers (3 marks)

b) Extend languages (3 marks)

c) Add parallel language layer on top of sequential language (3 marks)

d) Define totally new parallel language and compiler system (3 marks)

Name D

11

Question 6 (8 marks; 10 minutes)

Compare the following parallel programming models:

a) Shared Memory Model (2 marks)
b) Threads Model (2 marks)
c) Message Passing Model (2 marks)
d) Data Parallel Model (2 marks)

Name ID

12

Question 7 (12 marks; 15 minutes)

Tell whether the following equations are parallelizable or non-parallelizable. Also
show how to decompose the parts of the equations.

a)
do i=0,n
a(i+1) = a(i) * a(i-1)
enddo
b)

w = a[0] * b[0];

for (i=1; i<N; i++) {
c[i] =w;
w = ali] * b[il;

3

¢) F(x)=a*M(x) + b*N(x) — c*O(x)

d) H{)= F@)i+ G()

e) F(m,n) = (m+1)! + (n-1)!

Name D

13

f) F(x,y,z) = square root of ((x+y)° * (y+2)')

Question 8 (20 marks; 20 minutes)

From the following OpenMP and MPI code fragments, 1) explain how the code will
be processed and what would be the result for each code fragment 2) if there is
something wrong with the code, correct it or suggest better code fragment.

a)
if (z < min)
#pragma omp critical

min = z;

b)
int t_id, num_t;

#pragma omp parallel num_threads(3)

{

num_t = omp_get num_threads();

t id = omp_get thread num();

printf{"Hello world from thread ID %d/%d\n",t_id,num_t);
/

Name D

14

¢)
#pragma omp parallel for
for (i=0; i<NUMBER; i++)
{
result+=(sin(datafi])-cos(data[i]))/tan(data[i]);
/
printf("Result = %f\n",result);
d)
#pragma omp parallel
{
#pragma omp section
w = alpha();
#pragma omp section
v = beta();
#pragma omp section
y =delta();
/

Name 1D

15

e)
MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD),;
if (n!=0)
{
mysum = 0;

for (i = process_id + 1; i <= n; i += number_of processes)
{
mysum +=i;

/

MPI Reduce(&mysum, &sum, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

--—--End of Examination----

Pichaya Tandayya Lecturer

“It is not the strongest of the species that survive,
nor the most intelligent,

but the one most responsive to change.”

By Charles Darwin

Name D

