Name :		Student ID # :
--------	--	----------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๑ วันศุกร์ที่ ๒ สิงหาคม พ.ศ. ๒๕๕๖ วิชา ๒๑๕-๓๒๔ / ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๖ เวลา ๙.๐๐-๑๒.๐๐ น. ห้องสอบ Robot / S103

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

คำสั่ง

- ๑. ข้อสอบมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
- ษ. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.คร. วรวุช วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	Jaco	
ро	ja o	
ពា	Poo	
æ	ja o	
œ.	ро	
รวม	900	

1) (a) For the mechanism below, how many inversions does it have?

How many poles (instantaneous centers of velocity) does it have ?

(b) Determine the mobility of this system.

(c) What is the name of this joint? _______
Is it a higher pair or lower pair? ______

Write the name of each mechanism from this list:

Ratchet, Geneva, Scotch Yoke, Peaucellier, Whitworth

(d) For the mechanism shown, the contact at C is a rolling contact, while the contact at D is a sliding contact. Locate all the poles (instantaneous centers of velocity) at this position.

Name :	 Student ID # :	

- 2) The crank and rocker shown has mechanism shown has link 2 as the input crank and link 4 as the output.
 - (a) Draw both toggle positions of this mechanism.
 - (b) Determine the angle swept by the output link 4.
 - (c) If link 2 is rotating with a constant speed, assuming the advance stroke of link 4 is turning clockwise and the return stroke is counterclockwise, which direction must ω_2 be so that this mechanism is a quick-return ?
 - (d) Determine the time ratio between the advance stroke and the return stroke.

Name	٠	
Hallio	٠	

Student ID # : _____

3) The mechanism is as shown in the figure with $R_{O2A} = 20$ mm, $R_{AB} = 40$ mm, $R_{AC} = 80$ mm, $R_{O6D} = 40$ mm, $R_{BD} = 40$ mm, and $R_{O2O6} = 40$ mm. Link 2 is rotating with an angular velocity of 3 rad/s counterclockwise. Determine the velocity of point C, and the angular velocity of links 3, 5 and 6.

Scale 1 mm : 1 mm/s

Name :	Student ID # :
Name .	

4) The mechanism shown has $R_{AB} = 20$ mm, $R_{BC} = 20$ mm, $R_{CE} = 80$ mm, and $R_{AD} = 50$ mm. At the position shown link 2 has an angular velocity of 3 rad/s clockwise. Determine the angular velocity of link 3, using graphical method. Also draw the velocity image of link 3. (Extra scores: Find the location of the pole P13 and use it to confirm the answer.)

F 15 and use it to commit the answer.	
Scale 1 mm : 1 mm C	Scale 1 mm : 1 mm/s
3	
В	
4 35° 2	Ov
\$\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+
F 1	

5) The four bar linkage shown has link 2 rotating with a constant speed of $\omega_2=2$ rad/s CCW ($\alpha_2=0$). The velocity vector polygon is given as shown. Determine the angular acceleration of links 3, and 4.

0ą

Scale 1 mm : 1 mm/s^2