คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1
วันที่ 7 ตุลาคม 2556
วิชา 216-231 Engineering Thermodynamics I
วิชา 215-231 Engineering Thermodynamics I

ประจำปีการศึกษา 2556
เวลา 09.00-12.00 น.
ห้อง $R 200$ (01) , S817 (02)
ห้อง $A 401$ (01) , A400 (02)

คำสั่ง

1. ข้อสอบมีทั้งหมด 6 ข้อ ให้ทำลงในข้อสอบทุกข้อ, กระดาษไม่พอให้ทำด้านหลัง ช้อสอบ
2. อนุญาตนำกระดาษ $A 4$ จำนวน 1 แผ่น เข้าห้องสอบได้
3. อนุญาตให้ใช้เครื่องคิดเลขได้ และ Dictionary เข้าห้องสอบได้

รศ.กำพล ประทีปชัยกูร
ผศ.ดร.จันทกานต์ ทวีกุล ผู้ออกข้อสอบ

ชื่อ-สกุล
รหัส.

ชื่อ-สกุล

รหัส.

1) An adiabatic air compressor compresses $10 \mathrm{~L} / \mathrm{s}$ of air at 10 $\mathrm{kPa}, 20^{\circ} \mathrm{C}$ to $1000 \mathrm{kPa}, 300^{\circ} \mathrm{C}$. Determine a) the work required by the compressor, in $\mathrm{kJ} / \mathrm{kg} \quad$ b) the power required to drive the air compressor, in kW . Given $\mathrm{R}=0.287 \mathrm{kPa} . \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$

$$
\mathrm{C}_{\mathrm{p}}=1.018 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \quad(20 \text { marks })
$$

ชื่อ-สกุล. \qquad รหัส \qquad
2) A thin-walled double pipe counterflow heat exchanger is used to cool oil ($\mathrm{C}_{\mathrm{p}}=2.20 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$) from $150^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ at a rate of $2 \mathrm{~kg} / \mathrm{s}$ by water $\left(\mathrm{C}_{\mathrm{p}}=4.18 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$ that enters at $22^{\circ} \mathrm{C}$ at a rate of $1.5 \mathrm{~kg} / \mathrm{s}$. Determine the rate of heat transfer in the heat exchanger and the exit temperature of water.
(20 marks)

3) A $2 \mathrm{~m}^{3}$ rigid tank initially contains air at $100 \mathrm{kPa}, 22^{\circ} \mathrm{C}$ The tank is connected to a supply line through a valve. Air is flowing in the supply line at $600 \mathrm{kPa}, 22^{\circ} \mathrm{C}$. The valve is opened, and air is allowed to enter the tank until the pressure in the tank reaches the line pressure, at which point the valve is closed. A thermometer placed in the tank indicates that the air temperature at the final state is $77^{\circ} \mathrm{C}$. Determine a) the mass of air that has entered the tank b) the amount of heat transfer. Given for air $\mathrm{R}=0.287 \mathrm{kPa} . \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$
(25 marks)

ชื่อ-สกุล..
4) A heat pump receives heat from a lake that has an average winter time temperature of $6^{\circ} \mathrm{C}$ and supplies heat into a house having an average temperature of $27^{\circ} \mathrm{C}$.
a) if the house losses heat to the atmosphere at the rate of $64,000 \mathrm{~kJ} / \mathrm{h}$, determine the minimum power supplied to the heat pump, in kW .
b) A heat exchanger is used to transfer the energy from the lake water to the heat pump. If the lake water temperature decreases by $5^{\circ} \mathrm{C}$ as it flows through the lake water-to-heat pump heat exchanger, determine the minimum mass flow rate of lake water, in kg / s. Neglect the effect of lake water pump. Given, for water $\mathrm{C}_{\mathrm{p}}=4.18 \mathrm{~kJ} / \mathrm{kg}$.K (25 marks)

ชื่อ-สกุล.. รหัส
5) A Carnot heat engine receives heat from a reservoir at $900^{\circ} \mathrm{C}$ at a rate of $800 \mathrm{~kJ} / \mathrm{min}$ and rejects waste heat to the ambient air at $27^{\circ} \mathrm{C}$. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at $-5^{\circ} \mathrm{C}$ and transfers it to the same ambient air at $27^{\circ} \mathrm{C}$. Determine a) the maximum rate of heat removed from the refrigerated space b) the total rate of heat rejection to the ambient air.

6) Refrigerant 134 a at $240 \mathrm{kPa}, 20^{\circ} \mathrm{C}$ undergoes an isothermal process in a closed system until its quality is 20%. On per unit mass basis, determine how much work and heat transfer are required.

