Name \qquad Student ID \# : \qquad

คณะวิศวกรรมศาสตร์
 มหาวิทยาลัยสงขลานครินทร์

การสอบไึยถาค ประจำถาคการศีกษาที่ ๑
วันพุธที่ ๑๐ ตุลาคม พ.ศ. ๒๕๕๖
วิชา ๒๑๕-ต๒๔ / ๒๑๖-ต๒๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๕๕ะ
เวลา ๑๓.ต๐-๑๖.๓๐ น. ห้องสอบ $\$ 102, \$ 203$

ทุจริตในการสอบ ปรับขั้น่่ำคืออปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศีกษา

คำสั่ง

๑. ข้อสอบมีทั้งหมด ๕ ข้อ คะแนนเต็ม ๑๐๐ คะแนน ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ชช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางดูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒०	
๒	๒०	
๓	๒०	
๔	๒०	
๕	๒०	
รวม	๑००	

Name : \qquad Student ID \# : \qquad

1) (a)

(a)

(b)

(©)

(d)

(e)

(f)

Which cams have roller followers ? \qquad
Which cams have radial followers ?
Which cams have reciprocating followers ? \qquad
Which cams have oscillating followers ? \qquad
Of what type are all these cams ? \qquad
\qquad
\qquad

1) (D) Construct the displacement diagram and the cam profile for a plate cam with a translating knife-edge follower that rises 2 cm with simple harmonic motion in 90° of clockwise cam rotation, then dwells for 45°, returns with simple harmonic motion in 180°, and dwells for 45°. The prime-circle radius is 30 mm .

\qquad
\qquad
2) (a)

What is this type of gear?

What is its advantage over spur gears ?

(b) If input gear 2 is rotating 900 rpm cow , find the speed and direction of output gear 7 .

\qquad
\qquad
2) (c) A compound planetary gear train is shown below (not to scale). The data for gear numbers of teeth and input velocities are given as : $N_{3}=25, N_{4}=45, N_{5}=30, N_{6}=40, \omega_{\text {Arm }}=-50 \mathrm{rpm}$, and $\omega_{6}=20 \mathrm{rpm}$. Determine the velocity of gear $3, \omega_{3}$.

Name : \qquad Student ID \# : \qquad
3) The four bar mechanism can be used as a rock crusher with high mechanical advantage (MA) close to its toggie position. In this figure $R_{\mathrm{O}_{\mathrm{OA}}}=20 \mathrm{~mm}, \mathrm{R}_{\mathrm{AB}}=40 \mathrm{~mm}, R_{\mathrm{O4B}}=40 \mathrm{~mm}$, and $R_{\mathrm{O} 204}=60 \mathrm{~mm}$. Force P $=150 \mathrm{~N}$ is applied at the point A of link 2. Complete the free body diagram of each link and use the graphical method to determine the reaction force Q from the rock.

$$
\text { Scale } 1 \mathrm{~mm}: 10 \mathrm{~N}
$$

Name : \qquad Student ID \# : \qquad
4) Link 2 of the mechanism shown is rotating with a constant speed $\omega_{2}=$ of 2 rad /s clockwise. The velocity and acceleration analysis are given as shown. Link 3 ABC has the center of gravity at G which is 10 mm from $A C$, and 10 mm from $B C$. It has the mass $m_{3}=0.1 \mathrm{~kg}$, and the mass moment of inertia about point $G, I_{3 G}=42.42 \mathrm{~kg}-\mathrm{mm}^{2}$. Link 3 has an angular acceleration of $3 \mathrm{rad} / \mathrm{s}^{2} \mathrm{ccw}$, and the acceleration of its CG of $42.42 \mathrm{~mm} / \mathrm{s}^{2}$ Determine (a) the inertia force, (b) the inertia moment, and (c) the force F_{23} by link 2 which causes link 3 to have this motion.

Da Scale $1 \mathrm{~mm}: 2 \mathrm{~mm} / \mathrm{s}^{2}$

\qquad
\qquad
5) The figure shows a system with three masses on a rotating shaft; $m_{1}=0.1 \mathrm{~kg} \mathrm{at} 90^{\circ}$ and radius $R_{1}=30$ $\mathrm{mm}, \mathrm{m}_{2}=0.2 \mathrm{~kg} @ 240^{\circ}$ and radius $R_{2}=30 \mathrm{~mm}$, and $m_{3}=0.15 \mathrm{~kg} @ 0^{\circ}$ and radius $R_{3}=20 \mathrm{~mm}$. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at a 30 mm radius.

