Name :		Student ID # :
--------	--	----------------

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปฏิวัยภาค ประจำภาคการศึกษาที่ ๑ วันพุธที่ ๑๐ ตุลาคม พ.ศ. ๒๕๕๖ วิชา ๒๑๕-๓๒๔ / ๒๑๖-๓๒๔ : กลศาสตร์เครื่องจักรกล ประจำปีการศึกษา ๒๕๕๖ เวลา ๑๓.๓๐-๑๖.๓๐ น. ห้องสอบ S102, S203

ทุจริตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา

<u>คำสั่ง</u>

- ๑. ข้อสอบมีทั้งหมด ๕ ข้อ คะแนนเต็ม ๑๐๐ คะแนน ให้ทำลงในข้อสอบทุกข้อ
- ๒. อนุญาตให้ใช้เครื่องคิดเลขได้
- ๓. ให้ใช้เครื่องมือเขียนแบบได้
- ๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
9	ටම්	
b	po	
ด	po	
હ	po	
è	<u>ම</u>	
รวม	6 00	

Name:		

Student ID # :

1) (a)

Which cams have roller followers ?	_
Which cams have radial followers ?	
Which cams have reciprocating followers?	
Which cams have oscillating followers ?	<u>.</u>
Of what type are all these cams ?	

lame :	Student ID # :

1) (b) Construct the displacement diagram and the cam profile for a plate cam with a translating knife-edge follower that rises 2 cm with simple harmonic motion in 90° of clockwise cam rotation, then dwells for 45°, returns with simple harmonic motion in 180°, and dwells for 45°. The prime-circle radius is 30 mm.

Name :	Student ID # :
--------	----------------

2) (a)

What is this type of gear ?		
What is its advantage over spur gears ?		

(b) If input gear 2 is rotating 900 rpm ccw, find the speed and direction of output gear 7.

ame :	Student ID # :
-------	----------------

2) (c) A compound planetary gear train is shown below (not to scale). The data for gear numbers of teeth and input velocities are given as: N_3 = 25, N_4 = 45, N_5 = 30, N_6 = 40, ω_{Arm} = -50 rpm, and ω_6 = 20 rpm. Determine the velocity of gear 3, ω_3 .

Name :	Student ID # :
	· · · · · · · · · · · · · · · · · · ·

3) The four bar mechanism can be used as a rock crusher with high mechanical advantage (MA) close to its toggle position. In this figure $R_{O2A} = 20$ mm, $R_{AB} = 40$ mm, $R_{O4B} = 40$ mm, and $R_{O2O4} = 60$ mm. Force P = 150 N is applied at the point A of link 2. Complete the free body diagram of each link and use the graphical method to determine the reaction force Q from the rock.

Scale 1 mm : 10 N

lame :	Student ID # :

4) Link 2 of the mechanism shown is rotating with a constant speed ω_2 = of 2 rad/s clockwise. The velocity and acceleration analysis are given as shown. Link 3 ABC has the center of gravity at G which is 10 mm from AC, and 10 mm from BC. It has the mass m_3 = 0.1 kg, and the mass moment of inertia about point G, I_{3G} = 42.42 kg-mm². Link 3 has an angular acceleration of 3 rad/s² ccw, and the acceleration of its CG of 42.42 mm/s² Determine (a) the inertia force, (b) the inertia moment, and (c) the force F_{23} by link 2 which causes link 3 to have this motion.

tama :	Student ID #:
Name:	Student ID #

5) The figure shows a system with three masses on a rotating shaft; $m_1 = 0.1$ kg at 90° and radius $R_1 = 30$ mm. $m_2 = 0.2$ kg @ 240° and radius $R_2 = 30$ mm, and $m_3 = 0.15$ kg @ 0° and radius $R_3 = 20$ mm. Determine the magnitude and direction of the balance masses needed to dynamically balance the rotor. The balance masses will be placed in planes 4 and 5 at a 30 mm radius.

