คณะวิศวกรรมศาสตร์

มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1
วันที่ 7 ตุลาคม 2556
วิชา 215-332 Engineering Thermodynamics II
วิชา 216-332 Engineering Thermodynamics II

ประจำปีการศึกษา 2556
เวลา $09.00-12.00$ น.
ห้อง R200 (01), Robot (02)
ห้อง Robot (01)

คำสั่ง

1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำลงในข้อสอบทุกข้อ, กระดาษไม่พอให้ทำด้านหลัง ขัอสอบ
2. อนุญาตนำกระดาษ $A 4$ จำนวน 1 แผ่น เข้าห้องสอบได้
3. อนุญาตให้ใช้เครื่องคิดเลขได้ และ Dictionary เข้าห้องสอบได้

รศ.กำพล ประทีปชัยกูร
รศ.ดร.ชูเกียรติ คุปตานนท์
ผู้ออกข้อสอบ

ชื่อ-สกุล รหัส.

1) The closed feedwater heater of a regenerative Rankine cycle is to heat 7000 kPa feedwater from $260^{\circ} \mathrm{C}$ to a saturated liquid. The turbine supplies bleed steam of 6000 kPa and $325^{\circ} \mathrm{C}$ to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.
(25 marks)

2) A mixture of gases consists of 0.1 kg of $\mathrm{O}_{2}, 1 \mathrm{~kg}$ of CO_{2} and 0.5 kg of He. This mixture is maintained at 100 kPa , $27^{\circ} \mathrm{C}$. Determine the apparent molecular weight of this mixture, the volume it occupies, the partial volume of O_{2} and the partial pressure of He . Given: molecular weight of $\mathrm{CO}_{2}, \mathrm{O}_{2}$ and He are 44,32 and $4 \mathrm{~kg} / \mathrm{kmol}$, respectively. Universal gas constant $=8.314 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kmol} . \mathrm{K}$
(20 marks)
3) $10,000 \mathrm{~m}^{3} / \mathrm{h}$ of atmospheric air at $1 \mathrm{~atm}, 28^{\circ} \mathrm{C}$ with a dew point temperature of $25^{\circ} \mathrm{C}$ is to be cooled to $18^{\circ} \mathrm{C}$. Determine the rate of which condensate leaves this system and the cooling rate when the condensate leaves the system at $20^{\circ} \mathrm{C}$.
(25 marks)

4) Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is burned with 175% theoretical air during a combustion process. Assuming complete combustion and a total pressure of 100 kPa , determine a) the air-fuel ratio b) dew point temperature of the product. Given: the molecular weight of $\mathrm{C}, \mathrm{H}_{2}$ and air are 12, 2 and $29 \mathrm{~kg} / \mathrm{kmol}$, respectively.
(20 marks)
```
ชื่อ-สกุล
```

รหัส.
5) A constant volume tank contains a mixture of 120 gm CH gas and $600 \mathrm{gm} \mathrm{O}_{2}$ at $25^{\circ} \mathrm{C}, 200 \mathrm{kPa}$. The contents of the tank are now ignited and the methane gas burns completely. If the final temperature is 1200 K , determine a) the final pressure in the tank b) the heat transfer during this process.

Given: the molecular weight of CH_{4} and O_{2} are 16 and $32 \mathrm{~kg} / \mathrm{kmol}$.
(25 marks)

ชื่อ-สกุล
รหัส.

