

Prince of Songkla University Faculty of Engineering

Midterm Test 5 January 2014 215-274 Numerical Methods for Mechanical Engineering Semester 2/2013 09:00-12:00 Room: Robot

٦

Name	ID

Direction:

- 1. All types of calculator and dictionary are permitted.
- 2. There are totally 5 problems.
- 3. One sheet of hand-written A4 paper is allowed. No photocopy!!

Perapong Tekasakul Kittinan Maliwan

Instructors

Problem No.	Full score	Your mark
1	15	
2	10	
3	15	
4	28	
5	12	
Total	80	

Name _____

1. Determine the root of $\sin x = x^3$, where x is in radian, using bisection method to determine the root to $\varepsilon_a = 2\%$. Employ initial guesses of $x_i = 0.5$ and $x_u = 1.0$. (15 points)

Iter.	Xl	Xu	Xr	ε _a

 $x_1 + x_2 - x_3 = -3$ $6x_1 + 2x_2 + 2x_3 = 2$ $-3x_1 + 4x_2 + x_3 = 1$

(a) Use Gauss elimination to solve for the x's

(b) Substitute your results back into the original equation to check your solution

Name _____ ID _____

-96.5.1

3. Given the data

Calculate f(4) using Lagrange Polynomials of orders 1, 2, 3. (15 points)

4/7

Name

4. (28 points)

4.1 The function $f(x) = 2e^{-1.5x}$ can be used to generate the following table of unequally spaced data:

x	0	0.05	0.15	0.25	0.35	0.475	0.6
f(x)	2	1.8555	1.5970	1.3746	1.1831	0.9808	0.8131

Evaluate the integral from a = 0 to b = 0.6 using

- (a) analytical means
- (b) the trapezoidal rule, and

(c) the best combination of the trapezoidal and Simpson's rules

For (b) and (c), compute the percent relative error (ε_t). (10 points)

(a)

(b)

4.2 Evaluate

$$\int_0^3 x e^x dx$$

Using

(a) analytical means

(b) order of h⁸ Romberg integration

(c) four-point Gauss-Legendre formula

For (b) and (c), compute the percent relative error (ε_t). (18 points)

(a)

(b)

n	$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^{\delta})$
1				
2				
3				
4				

(c)

5. The following data was collected for the distance traveled versus time for a rocket:

t(s)	0	25	50	75	100	125
y (km)	0	32	58	78	92	100

Use the best numerical method available of accuracy $O(h^2)$ to estimate the rocket's velocity and acceleration at each time. (12 points)

t(s)	y(km)	v(m/s)	$a(m/s^2)$
0	0		
25	32		
50	58		
75	78		
100	92		
125	100		