\qquad ID

Prince of Songkla University
Faculty of Engineering

Name \qquad ID \qquad

Direction:

1. All types of calculator and dictionary are permitted.
2. There are totally 5 problems.
3. One sheet of hand-written A4 paper is allowed. No photocopy!!

Perapong Tekasakul Kittinan Maliwan

Instructors

Problem No.	Full score	Your mark
1	15	
2	10	
3	15	
4	28	
5	12	
Total	$\mathbf{8 0}$	

1. Determine the root of $\sin x=x^{3}$, where x is in radian, using bisection method to determine the root to $\varepsilon_{a}=2 \%$. Employ initial guesses of $x_{l}=0.5$ and $x_{u}=1.0$. (15 points)

Iter.	x_{1}	x_{u}	x_{r}	ε_{a}

2. Give the system of equations (10 points)

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=-3 \\
& 6 x_{1}+2 x_{2}+2 x_{3}=2 \\
& -3 x_{1}+4 x_{2}+x_{3}=1
\end{aligned}
$$

(a) Use Gauss elimination to solve for the $x^{\prime} s$
(b) Substitute your results back into the original equation to check your solution
3. Given the data

x	1	2	3	5	7	8
$f(x)$	3	6	19	99	291	444

Calculate $f(4)$ using Lagrange Polynomials of orders 1, 2, 3. (15 points)
4. (28 points)
4.1 The function $f(x)=2 e^{-1.5 x}$ can be used to generate the following table of unequally spaced data:

x	0	0.05	0.15	0.25	0.35	0.475	0.6
$f(x)$	2	1.8555	1.5970	1.3746	1.1831	0.9808	0.8131

Evaluate the integral from $\mathrm{a}=0$ to $\mathrm{b}=0.6$ using
(a) analytical means
(b) the trapezoidal rule, and
(c) the best combination of the trapezoidal and Simpson's rules

For (b) and (c), compute the percent relative error $\left(\varepsilon_{\mathrm{t}}\right)$. (10 points)
(a)
(b)
(c)
\qquad
4.2 Evaluate

$$
\int_{0}^{3} x e^{x} d x
$$

Using
(a) analytical means
(b) order of h^{8} Romberg integration
(c) four-point Gauss-Legendre formula

For (b) and (c), compute the percent relative error $\left(\varepsilon_{\mathrm{t}}\right)$. (18 points)
(a)
(b)

n	$\mathrm{O}\left(\mathrm{h}^{2}\right)$	$\mathrm{O}\left(\mathrm{h}^{4}\right)$	$\mathrm{O}\left(\mathrm{h}^{6}\right)$	$\mathrm{O}\left(\mathrm{h}^{8}\right)$
1				
2				
3				
4				

(c)
5. The following data was collected for the distance traveled versus time for a rocket:

$t(s)$	0	25	50	75	100	125
$y(k m)$	0	32	58	78	92	100

Use the best numerical method available of accuracy $O\left(h^{2}\right)$ to estimate the rocket's velocity and acceleration at each time. (12 points)

$t(\mathrm{~s})$	$y(\mathrm{~km})$	$v(\mathrm{~m} / \mathrm{s})$	$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
0	0		
25	32		
50	58		
75	78		
100	92		
125	100		

