\qquad

คณะวิศวกรรมศาสตร์
 มหาวิทยาลัยสงขลานคริหทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๒
วันศุกร์ที่ ๑๐ มกราคม พ.ศ. ๒ณむ๘

ประจำปีการศึกษา ๒ส๔๐
เวลา $๙ .00-๑ ๒ .00$ น. ห้องสอบ A201 / S102

คำสั่ง
๑. ข้อสอบมีทั้งหมด ข้อ ให้หำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	bo	
๒	๒о	
๓	bo	
α	bo	
๔	๒o	
รวม	๑00	

\qquad
\qquad

1) (a) Determine the mobility (degrees of freedom) of the mechanism. Note that the fork joint is the same as pin-in-slot joint.

(b) Determine the mobility of this mechanism. How many kinematic inversions does this mechanism have, including the one shown in this figure?

\qquad
(c) What is the name of this joint? \qquad
Is it a higher pair or lower pair ? \qquad
How many degrees of freedom does it have? \qquad

Write the name of each mechanism :

(d) Determine what type of contact (rolling or sliding) the joint between links 2 and 3 must be, in order that the mobility of this mechanism is 1.

\qquad
\qquad
2) The 6-bar mechanism shown in the figure has its link 4 at 30 degree from horizontal axis.
(a) How many poles (instantaneous center of velocities) does this mechanism have?
(b) Locate the following poles of this mechanism at this position; P12, P14, P15, P16, P23, P24, P25, P26, P34, P45, P46, and P56.
(c) If link 6 has a velocity of $30 \mathrm{~mm} / \mathrm{s}$ to the left, determine the angular velocity of link 2 using the locations of the poles P_{12} and P_{26}.

(d) Draw the mechanism when link 4 is 45 degree from horizontal axis, and determine the distance
$R_{04 \mathrm{~A}}=$ \qquad and $R_{O 4 C}=$ \qquad -.

02
ค7

04
ค,
\qquad
3) The 6-bar mechanism is as shown in the figure, with $R_{\mathrm{O} 2 \mathrm{~A}}=20 \mathrm{~mm}, R_{A B}=30 \mathrm{~mm}, R_{\mathrm{O} 4 \mathrm{~B}}=30 \mathrm{~mm}, R_{B C}=$ $20 \mathrm{~mm}, R_{\mathrm{O4C}}=40 \mathrm{~mm}, R_{\mathrm{CD}}=50 \mathrm{~mm}$, and $R_{\mathrm{O} 204}=40 \mathrm{~mm}$. Link 2 is rotating with an angular velocity of 3 $\mathrm{rad} / \mathrm{s}$ counterclockwise. Determine the angular velocities of links 5 and velocity of point D.

$+\mathrm{Ov}$
\qquad
\qquad
4) In the mechanism shown, link 2 is having constant angular velocity of $5 \mathrm{rad} / \mathrm{s}$ clockwise, and and angular acceleration of $10 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise. The velocity polygon is provided as shown. Find the acceleration of point B and the angular acceleration of link 3.

Scale $1 \mathrm{~mm}: 10 \mathrm{~mm} / \mathrm{s} 2$ $+\mathrm{Oa}$
\qquad
5) Link 2 of the mechanism shown is rotating clockwise at a constant speed of $1 \mathrm{rad} / \mathrm{s}\left(\omega_{2}=1 \mathrm{rad} / \mathrm{s} \mathrm{CW}\right.$, $\alpha_{2}=0$), with $R_{O 2 A}=40 \mathrm{~mm}, R_{A B}=30 \mathrm{~mm}, R_{O 4 C}=30 \mathrm{~mm}$, and $R_{O 2 O 4}=60 \mathrm{~mm}$. Determine the angular velocity and the angular acceleration of link 3.

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$

