Name.....Student I.D....

Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Mid-term Exam for Semester: 2 Academic Year: 2013

Date: January 9, 2014 Time: 09.00-12.00

Subject: 237-320 Mechanical Behavior of Materials Room: R200

Instruction

1. There are 4 problem sets. Please do all of them. Write your answers in the space provided. If you need more space, you can write on the back of paper.

- 2. Text books, course notes and other studying materials are not allowed.
- 3. Dictionary, calculator, and stationery are allowed.
- 4. This mid-term exam is accounted for 25% of the total grade.

Asst. Prof. Dr. Thawatchai Plookphol

Problem No.	Full Score	Student's Score
1.	25	
2.	25	
3.	25	
4.	25	
Total	100	

NameStudent I.D
Please explain the following terms: 1.1 Anisotropic material (5 points)
1.2 Ductile material (5 points)
1.3 Linear elastic behavior (5 points)

1.4 Non-linear elastic behavior (5 points)
1.5 Plane strain condition (5 points)

237-320 Mechanical Behavior of Material	ial	ivialen	IVI	OL	enavior	Mechanical	-320	737	')
---	-----	---------	-----	----	---------	------------	------	-----	----

Page 3 of 10

Nomo	Student I.D
Name	.,,

2. A 3-D state of stress is given by

$$= \begin{bmatrix} 100 & 0 & 0 \\ 0 & 200 & 50 \\ 0 & 50 & -100 \end{bmatrix}$$
 MPa.

<u>-</u>
Determine the following: 2.1 The three principal stresses (15 points) 2.2 The maximum shear stress (5 points) 2.3 Draw 3-D Mohr's circles from the principal stresses and label the principal stresses and the maximum shear stress (5 points)

NameStudent I.D
3. A spherical pressure vessel made of steel ($E = 200$ GPa, $v = 0.3$) has a radius (r) of 0.5 m and wall thickness (t) of 4×10^{-3} m. A strain gage was attached on the outer surface of the vessel in the circumferential direction. The strain gage indicates $\varepsilon_1 = \varepsilon_2 = 0.002$ Based on the theory of elasticity, 3.1 Calculate the internal pressure (p) in the vessel. (15 points) 3.2 Determine the radial strain (ε_3). (5 points) 3.3 Estimate the thickness of the vessel at the internal pressure p . (5 points)

Name			Student I.D			
4. Silicon single	e crystal has complia	ance (S) con	stants of			
	$S_{11} = 7.7$ $S_{12} = -2.2$ $S_{44} = 12.6$	TPa ⁻¹				
4.2 What co	e Young's modulus nclusion can be dra	wn from the	e result in 4.15	? (5 points)		
						• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	. 				
			• • • • • • • • • • • • • • • • • • • •			
					• • • • • • • • • • • • • • • • • • • •	
						,

Name.....Student I.D....

Formula

For 3-D stress:

$$\det\begin{bmatrix} \sigma - \sigma_{xx} & -\tau_{yx} & -\tau_{zx} \\ -\tau_{xy} & \sigma - \sigma_{yy} & -\tau_{zy} \\ -\tau_{xz} & -\tau_{yz} & \sigma - \sigma_{zz} \end{bmatrix} = 0$$

$$I_1 = \sigma_{xx} + \sigma_{yy} + \sigma_{zz}$$

$$I_2 = \sigma_{xx}\sigma_{yy} + \sigma_{yy}\sigma_{zz} + \sigma_{zz}\sigma_{xx} - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{zx}^2$$

$$I_3 = \sigma_{xx}\sigma_{yy}\sigma_{zz} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{xx}\tau_{yz}^2 - \sigma_{yy}\tau_{zx}^2 - \sigma_{zz}\tau_{xy}^2$$

$$\sigma^3 - I_1\sigma^2 + I_2\sigma - I_3 = 0$$

For thin-walled spherical pressure vessel, plane stress condition is assumed,

From the theory of elasticity,

$$\varepsilon_{1} = \frac{1}{E} (\sigma_{1} - v\sigma_{2})$$

$$\varepsilon_{2} = \frac{1}{E} (\sigma_{2} - v\sigma_{1})$$

$$\varepsilon_{3} = -\frac{v(\sigma_{1} + \sigma_{2})}{E}$$

Name.....Student I.D....

For a cubic crystal:

$$\frac{1}{E} = S_{11} - 2 \left[\left(S_{11} - S_{12} \right) - \frac{1}{2} S_{44} \right] \left(l^2 m^2 + m^2 n^2 + l^2 n^2 \right)$$

Direction cosines:

$$l = \frac{x}{\sqrt{\left(x^2 + y^2 + z^2\right)}}$$

$$m = \frac{y}{\sqrt{\left(x^2 + y^2 + z^2\right)}}$$

$$n = \frac{z}{\sqrt{\left(x^2 + y^2 + z^2\right)}}$$