PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENGINEERING
 Department of Computer Engineering

Final Examination: Semester 2
Date: 4th March, 2014
Subject Numbers: 242-213
Subject Title: Discrete Mathematics
Lecturer: Aj. Andrew Davison

Academic Year: 2013-2014
Time: 9:00-12:00 (3 hours)
Room: Robot Head

Exam Duration: 3 hours
This paper has 9 questions, in 4 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

Question 1

Prove De Morgan's first law twice: once using the set builder notation and again using membership tables. The law:
$\overline{A \cup B}=\bar{A} \cap \bar{B}$

Question 2

(20 minutes; 20 marks)
Explain the following function mappings:
a) injective (5)
b) surjective (5)
c) bijective (5)
d) inverse (5)

Explain each of your answers in words, with a diagram, and with a small function example.

Question 3

(20 minutes; 20 marks)
How many bit strings of length 10 either begin with three 0 's or end with two 0 's?
Explain all your working, not just the final answer.

Question 4

(20 minutes; 20 marks)
The name of a variable in Java is a string of between 1 and 65,535 characters in length. Each character can be an uppercase or a lowercase letter, a dollar sign, an underscore ('_'), or a digit, except that the first character must not be a digit.
Determine the number of different variable names in Java.
Explain all your working, not just the final answer.
Hint: use the geometric series in your answer:

Question 5

(30 minutes; 30 marks)
Use induction to show that each of the following equations is true:
a) $3+3 \cdot 5+3 \cdot 5^{2}+\cdots+3 \cdot 5^{\mathrm{n}}=3 *\left(5^{(\mathrm{n}+1)}-1\right) / 4$, when $\mathrm{n} \geq 0$
b) $2-2 \cdot 7+2 \cdot 7^{2}-\cdots+2(-7)^{\mathrm{n}}=\left(1-(-7)^{(\mathrm{n}+1)}\right) / 4$, when $\mathrm{n} \geq 0$
c) $3^{n}<n$!, when $n>6$
(Math help: $3^{6}=729,6!=720$)
c) 3 !, n

Question 6

(10 minutes; 10 marks)
Show that $x^{4}+9 x^{3}+4 x+7$ is $O\left(x^{4}\right)$. You must use witnesses to explain your answer.

Question 7

(15 minutes; 15 marks)
The conventional algorithm for evaluating a polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ at $x=c$ can be expressed in pseudocode as:

```
double polynomial(double c, double a0, double al, ..., double an)
{
    power = 1
    y = a0
    for i = 1 to n {
        power = power*c
        y = y + ai*power
    }
    return y // the value of the polynomial at x = c
}
```

a) Evaluate $3 x^{2}+x+1$ at $x=2$ by working through each step of the algorithm showing the values assigned at each assignment step. (10)
b) Exactly how many multiplications and additions are used to evaluate a polynomial of degree n at $\mathrm{x}=\mathrm{c}$? Do not count additions used to increment the loop variable. Show all your working. (5)

Question 8

(15 minutes; 15 marks)
There is a more efficient algorithm (in terms of the number of multiplications and additions used) for evaluating polynomials than the algorithm in the previous question. It is called Horner's method.
The following pseudocode shows how to use this method to find the value of $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ at $x=c$.

```
procedure horner(double c, double a0, double a1, ..., double an)
{
    for i = 1 to n
        y= y*C + an-i
    return y
}
```

a) Evaluate $3 \mathrm{x}^{2}+\mathrm{x}+1$ at $\mathrm{x}=2$ by working through each step of the algorithm showing the values assigned at each assignment step. (10)
b) Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degreen at $x=c$? Do not count additions used to increment the loop variable. Show all your working. (5)

Question 9

(30 minutes; 30 marks)
a) Write a recursive C function largestElem() that takes only a LIST argument as input, and returns the largest element in the list. Assume that the list contains only positive integers. If the list is empty, the function returns -1. (10)
b) Write an iterative C function (i.e. one using a loop or loops) which does the same task as in (a). Do not use recursion. (10)
c) Compare the functions of part (a) and (b), and say in words which is more space efficient. Explain your decision. (10)
Hint: efficiency in this case means the amount of memory used to store data. Do not use big-Oh notation.

