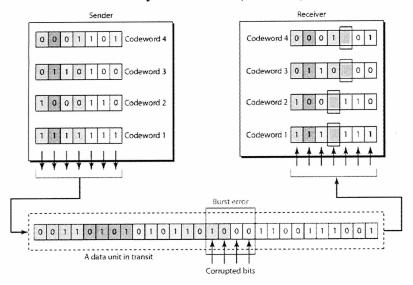
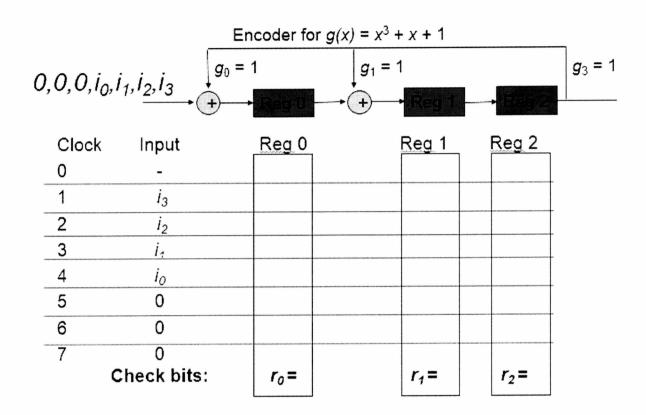
| Student Name:                                         | Student IDSection                              |  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| PRINCE OF SONGKLA                                     | UNIVERSITY                                     |  |  |  |  |  |
| FACULTY OF ENGINEERING                                |                                                |  |  |  |  |  |
| Final Examination: Semester II                        | Academic Year: 2013                            |  |  |  |  |  |
| Date: 28 February 2014                                | Time: 13.30-15.30                              |  |  |  |  |  |
| Subject: 242-214 การสื่อสารข้อมูล (Data Communication | s) Room: Robot                                 |  |  |  |  |  |
| ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวชาที่        | ทุจริต และพักการเรียน 1 ภาคการศึกษา            |  |  |  |  |  |
| Analoug Transmission                                  | (50 marks)                                     |  |  |  |  |  |
| 1. From the picture below, please state what modula   | tion is used for (b), (c), and (d): (15 marks) |  |  |  |  |  |
| (a) Input binary $0$ $0$ $1$ $1$ $0$ $1$ $1$ sequence | 0 0 1                                          |  |  |  |  |  |
| (b)                                                   |                                                |  |  |  |  |  |
| (c) — — — — — — — — — — — — — — — — — — —             | <b>M M M M M M M M M M</b>                     |  |  |  |  |  |
| (d)                                                   | <b>/</b> / / / / / / / / / / / / / / / / / /   |  |  |  |  |  |
| Answer                                                |                                                |  |  |  |  |  |
|                                                       |                                                |  |  |  |  |  |
|                                                       |                                                |  |  |  |  |  |


| Student Name:                                                                                                                                                  | Student ID                      | Section            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|
| Draw a signal diagram of modulation by using                                                                                                                   | g AM (Amplitude Modulation).    | (5 marks)          |
| Modulating signal                                                                                                                                              | <b></b>                         |                    |
| Carrier frequency  Modulated signal                                                                                                                            |                                 |                    |
|                                                                                                                                                                | <b>→</b>                        |                    |
| Answer                                                                                                                                                         |                                 |                    |
|                                                                                                                                                                | <del>-</del>                    |                    |
| 3. Given a bandwidth of 10,000 Hz (1000 to 11, system. Assume there is no gap between the and the bandwidths in each direction, b) cenusage chart. (10 marks). | bands in the two directions. Fi | nd a) the carriers |
| Answer                                                                                                                                                         |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |
|                                                                                                                                                                |                                 |                    |

| ent Name:                                          | Student IDsection                            |
|----------------------------------------------------|----------------------------------------------|
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
| 4. Below pictures are constellation diagrams whi   | ich help us to define the amplitude and phas |
|                                                    |                                              |
| signal. Please describe what modulation technology | nique is used for each constellation diagram |
| below: (20 marks)                                  |                                              |
| below. (20 marks)                                  |                                              |
| a.                                                 | b.                                           |
| Q ·                                                | Q.                                           |
|                                                    |                                              |
| 2 3                                                | -3 3                                         |
|                                                    |                                              |
| Q                                                  | Q                                            |
| 2                                                  | 2                                            |
|                                                    |                                              |
| -2 $2$ $1$                                         |                                              |
|                                                    |                                              |
| <b>♣-</b> 2                                        | _2 <b>†</b>                                  |
| c.                                                 | d.                                           |
|                                                    | u.                                           |
| Answer                                             |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |
|                                                    |                                              |

| tudent Na | me:                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          | St                                                      | udent II                          | )                                    |                                         |                                              | Se                            | ection .                                |                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | •••••                                                    |                                                         |                                   | ••••••                               |                                         |                                              |                               | •••••                                   |                                       |
|           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              |                               |                                         |                                       |
| ror De    | tection and Co                                                                                                                                                                            | orrection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                          |                                                         |                                   |                                      |                                         |                                              | (75                           | marks                                   | )                                     |
| 5. Ha     | tection and Co<br>umming Code of                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed for                                                  | FEC (I                                                   | Forwar                                                  | d Error                           | Corre                                | ction)                                  |                                              |                               |                                         |                                       |
| 5. Ha     | ımming Code (                                                                                                                                                                             | can be appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                          |                                                         |                                   |                                      |                                         | technic                                      | que,                          | as list                                 | ed                                    |
| 5. Ha     | nmming Code of                                                                                                                                                                            | can be applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s the pa                                                | arity fo                                                 | or some                                                 | of the                            | bits in                              | the co                                  | deword                                       | que,                          | as list                                 | ed<br>sition                          |
| 5. Ha     | nmming Code of<br>low<br>Each parity b                                                                                                                                                    | can be applicates bit determin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s the pa                                                | arity fo                                                 | or some                                                 | of the                            | bits in<br>at it a                   | the co                                  | deword                                       | que,<br>d. T                  | as list<br>he pos                       | ed<br>sition<br>kips.                 |
| 5. Ha     | Each parity be of the parity Position 1: cl                                                                                                                                               | can be applicated of the calculates bit determinates the check 1 bit, and check 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s the pa<br>nes the<br>skip 1                           | arity fo<br>e seque<br>bit, ch                           | or some<br>ence of<br>leck 1                            | of the bits th                    | bits in<br>at it a                   | the colliternat                         | deword<br>ely che                            | que,<br>d. T<br>ecks<br>7,9,1 | as list he pos and s 1,13,1             | ed<br>sition<br>kips                  |
| 5. Ha     | Each parity be of the parity Position 1: cl. Position 2: (2,3,6,7,10,11)                                                                                                                  | oan be applied to the calculates bit determine the heck 1 bit, so the check 2 1,14,15,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s the pa<br>nes the<br>skip 1<br>bits,                  | arity fo<br>e seque<br>bit, ch<br>skip                   | or some<br>ence of<br>eck 1                             | of the bits the bit, skips, che   | bits in at it a bit bit bit bit at 2 | the colliternat<br>, etc. (<br>bits,    | deword<br>ely che<br>1,3,5,7<br>skip         | d. Tecks                      | as list he pos and s 1,13,1 bits,       | ed<br>sition<br>kips<br>5,)           |
| 5. Ha     | Each parity be of the parity Position 1: cl. Position 2: (2,3,6,7,10,12). Position 4:                                                                                                     | can be applicated bit determine the latest 2 latest 2 latest 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s the panes the skip 1 bits,                            | arity for<br>e seque<br>bit, ch<br>skip<br>skip          | or some<br>ence of<br>eck 1                             | of the bits the bit, skip is, che | bits in at it a bit bit bit bit at 2 | the colliternat<br>, etc. (<br>bits,    | deword<br>ely che<br>1,3,5,7<br>skip         | d. Tecks                      | as list he pos and s 1,13,1 bits,       | ed<br>sition<br>kips.<br>(5,)<br>etc. |
| 5. Ha     | Each parity be of the parity Position 1: cl. Position 2: (2,3,6,7,10,13). Position 4: (4,5,6,7,12,13)                                                                                     | can be applicated bit determine the determin | s the panes the skip 1 bits, bits, 21,22,2              | arity for<br>e sequent<br>bit, che<br>skip<br>skip       | or some<br>ence of<br>eck 1<br>2 bit<br>4 bit           | of the bits the bit, skip es, che | bits in at it a bit 1 bit ck 2 ck 4  | the colliternat, etc. (bits, bits,      | deword<br>ely che<br>1,3,5,7<br>skip<br>skip | d. T ecks 7,9,1               | as list he pos and s 1,13,1 bits,       | ed kips 5,)                           |
| 5. Ha     | Each parity be of the parity Position 1: cl. Position 2: (2,3,6,7,10,12). Position 4: (4,5,6,7,12,13). If the original content is the property of the parity position 4: (4,5,6,7,12,13). | can be applicated bit determine the latest 2 latest 2 latest 4 lat | s the panes the skip 1 bits, bits, 21,22,2              | arity for<br>e seque<br>bit, che<br>skip<br>skip<br>23,) | or some<br>ence of<br>eck 1<br>2 bit<br>4 bit           | of the bits the bit, skip es, che | bits in at it a bit 1 bit ck 2 ck 4  | the colliternat, etc. (bits, bits,      | deword<br>ely che<br>1,3,5,7<br>skip<br>skip | d. T ecks 7,9,1               | as list he pos and s 1,13,1 bits,       | ed kips 5,)                           |
| 5. Ha     | Each parity be of the parity Position 1: cl. Position 2: (2,3,6,7,10,12). Position 4: (4,5,6,7,12,13). If the original content is the property of the parity position 4: (4,5,6,7,12,13). | can be applicated bit determine heck 1 bit, so the check 2 1,14,15,) check 4 3,14,15,20,2 ginal data is g Code? (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s the panes the skip 1 bits, bits, 21,22,2 s 1001 marks | arity for sequence skip  skip  23,) 111002               | er some<br>ence of<br>eck 1<br>2 bit<br>4 bit<br>11, wh | of the bits the bit, skip is, che | bits in at it a b 1 bit ck 2 ck 4    | the collternat, etc. (bits, bits, bits, | deword<br>ely che<br>1,3,5,7<br>skip<br>skip | d. Tecks 7,9,1 2 4            | as list he pos and s 1,13,1 bits, bits, | etc etc g the                         |

| Student Name: | Student ID | Section |
|---------------|------------|---------|
| Student Name: | Student ID |         |


6. Below is a technique of column by column sending scheme. There is 4-bit burst error, and burst error correction is applied by using Hamming code. Please fill in all missing values of codewords received by the receiver. (10 marks)



| Answer |      |      |
|--------|------|------|
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        | <br> | <br> |
|        | <br> | <br> |

| Ctudant Namas | Student ID | Section        |
|---------------|------------|----------------|
| Student Name: | Student ID | identification |

7. The below picture shows one cyclic redundancy check using a shift register circuit. Please fill in each shift register value in each clock stage, and the remainder, if the codeword received is 1001000 (most significant bit is on the far left) (20 marks)



| <br> | <br> |
|------|------|

Answer

| Student Name: | Student ID | Section |
|---------------|------------|---------|
|---------------|------------|---------|

8. Below is checksum from the sender side. Please show checksum at the receiver side (10 marks)

| 1                                       | 0      | 1 | 3      |        | Carries                    |
|-----------------------------------------|--------|---|--------|--------|----------------------------|
| *************************************** |        |   | 6      |        | (Fo)<br>(ro)               |
|                                         | 7      | 5 | 7      | Α      | (uz)                       |
|                                         | 6<br>0 | 1 | 6<br>0 | E<br>0 | (an)<br>Checksum (initial) |
|                                         | 8      | F | С      | 6      | Sum (partial)              |
|                                         | 8      | F | C      | 7      | Sum                        |
|                                         | 7      | 0 | 3      | 8      | Checksum (to send)         |

Answer

| tudent Name: Student ID                                                                                                | Section                                                                                         |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                                        |                                                                                                 |
| 9. Suppose a message is sent and a single bit error occurs. given picture below (show how you get the value). (10 mag) | What bit number is error in arks)                                                               |
| 1 3 2 7 6 4                                                                                                            | Bit positions: Blue is parity bit number Red is data bit number                                 |
|                                                                                                                        | Bit value in codeword: Blue is parity bit number Black is data bit value Red is data bit number |
| nswer                                                                                                                  |                                                                                                 |
|                                                                                                                        |                                                                                                 |
|                                                                                                                        |                                                                                                 |
|                                                                                                                        |                                                                                                 |

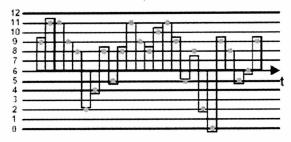
| Student N                               | Jame:                                                         | Student IDSe                                         | ection    |
|-----------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-----------|
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
| Multiple                                | exing                                                         | (65 marks)                                           |           |
|                                         | a) What is statistical multiple b) Why does it differ from co | exing? (5 marks) onventional multiplexing? (5 marks) |           |
| (c                                      | c) What are the advantages o                                  | of the statistical MUX compared to the convention    | n MUX? (5 |
| marks                                   |                                                               |                                                      |           |
| Answer                                  |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
| *************************************** |                                                               |                                                      |           |
| ••••••                                  |                                                               |                                                      |           |
| *************************************** |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |
|                                         |                                                               |                                                      |           |

.....

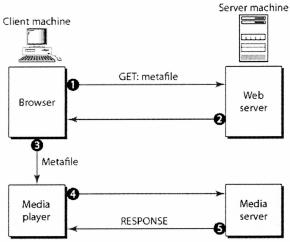
| Student Name:                                                                                               | Student ID                                                | Section                                               |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| 11. (a) What is the difference between of the advantages and disadvantages of (10 marks)                    | circuit switching and packer<br>f packet switching (compa | et switching? (b) What are red to circuit switching)? |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
| 12. Two offices are communicating us together. A unit is 1 bit. Find  (a) the duration of 1 bit before mult |                                                           | onnections are multiplexed                            |
| (b) the transmission rate of the link,                                                                      | (5 marks)                                                 |                                                       |
| (c) the duration of a time slot, and                                                                        | (5 marks)                                                 |                                                       |
| (d) the duration of a frame (5 marks                                                                        | 3).                                                       |                                                       |
| Answer                                                                                                      |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |
|                                                                                                             |                                                           |                                                       |

.....

| Student Name:                     | Stu                | dent ID                | Section         |
|-----------------------------------|--------------------|------------------------|-----------------|
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
| 13. Four data channels (digital), | , each is with 1 M | bps, use a satellite c | hannel of 1 MHz |
| Design an appropriate config      |                    |                        |                 |
|                                   | ,                  | ,                      |                 |
| 1 Mbps                            | 1                  | N                      |                 |
| <br>Digital                       | Analog             |                        |                 |
| 1 Mbps                            |                    |                        |                 |
| Digital                           | Analog             | 1 MH;                  | 2               |
| 1 Mbps                            |                    | FDM                    |                 |
| Digital                           | Analog             | 1 /                    |                 |
| 1 Mbps                            | 1                  |                        |                 |
| Digital                           | Analog             | $\mathcal{V}$          |                 |
| Answer                            |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |
|                                   |                    |                        |                 |


| Student Name: Student ID. Section                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                    |
| 14. The figure shows synchronous TDM with 4 1Mbps data stream inputs and one dat stream for the output. The unit of data is 1 bit. Please use all information appeared in the figure to answer the following questions: (20 marks) |
| 1 Mbps 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                           |
| <ol> <li>The input bit duration.</li> <li>The output bit duration,</li> <li>The output bit rate,</li> <li>The output frame rate.</li> </ol>                                                                                        |
| Answer                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                    |

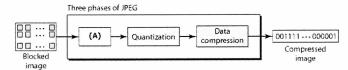
| รหัส    | หน้าที่ | 1 |
|---------|---------|---|
| J 11 61 | HMIH    | 1 |


## Part II

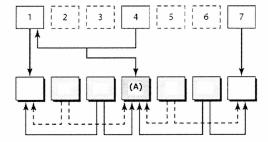
เลือกคำตอบที่ถูกที่สุดเพียงข้อเดียว (เลือกมากกว่า 1 ข้อ คะแนน -1 หากคำตอบถูกได้ 2 คะแนน หากตอบผิดได้ -1 คะแนน

1. What is this step called in voice processing?




- a) Digitization
- b) Quantization
- c) Sample and Hold
- d) Analog to digital conversion
- e) Digital to Analog conversion
- 2. What is the command signal in step 2?

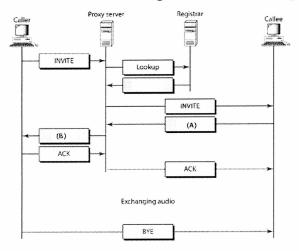



- a) Setup
- b) Response
- c) Play
- d) Pause
- e) Get: audio/video file
- 3. What is the command signal in step 4
  - a) Setup
  - b) Response
  - c) Play
  - d) Pause
  - e) Get: audio/video file

| รหัส    | หน้าที่ | 2 |  |
|---------|---------|---|--|
| d     b |         | _ |  |

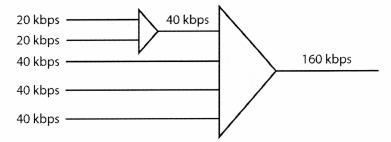
- 4. Which one is true for G.711 audio codec?
  - a) Bit rate is 64 kbps
  - b) There are 2 sub-version: u-Law and A-law
  - c) Sampling rate is 8 kbps
  - d) Sampling size is 8 bits
  - e) All of above
- 5. Which one is the advantage of G.723 over G.711
  - a) Lower bit rate
  - b) Sample size is bigger
  - c) More delay in packetizing
  - d) Need low bandwidth
  - e) All of above
- 6. Below is a video process. What is (A)?



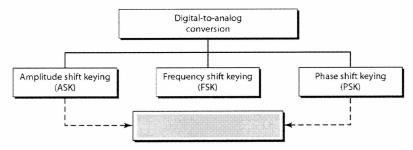

- a) Discrete Cosine Transform (DCT)
- b) Pulse code modulation (PCM)
- c) Video codec
- d) Analoug to digital conversion
- e) No correct answer
- 7. Below is MPEG process. What is (A)?



- a) I-frame
- b) B-frame
- c) P-frame
- 8. Which one is NOT a SIP message?
  - a) Invite
  - b) Response


| รหัส   | หน้าที่   | 3 |
|--------|-----------|---|
| d [16] | 11 10 111 | - |

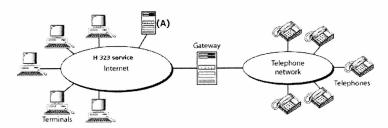
- c) Bye
- d) Option
- e) Register
- 9. Below is SIP signal flow. What is signal (A) called?



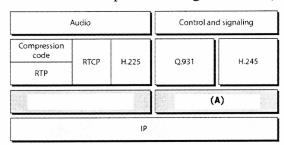

- a) Register
- b) Response
- c) OK
- d) Option
- e) Ack
- 10. What is signal (B) called?
  - a) Register
  - b) Response
  - c) OK
  - d) Option
  - e) Ack
- 11. We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What is the bit rate if we modulated our data by using ASK with d = 1, r=1?
  - a) 10 kbps
  - b) 25 kbps
  - c) 50 kbps

- d) 100 kbps
- e) 500 kbps
- 12. An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate. If each signal element carries one bit information.
  - a) 1000 kbps
  - b) 2000 kbps
  - c) 4000 kbps
  - d) 5000 kbps
  - e) No correct answer
- 13. What do we call the multiplexing scheme given below?




- a) Multilevel
- b) Multislot
- c) Pulse stuffing
- d) Bit interleaving
- e) Byte interleaving
- 14. What is a missing box?




- a) PAM
- b) QAM
- c) WDM

| หัส ห | เน้าที่ | 5 |  |
|-------|---------|---|--|
|-------|---------|---|--|

- d) DWDM
- e) No correct answer
- 15. In H.323 service, what (A) is called?



- a) H.323 server
- b) Gatekeeper
- c) Domain Name server
- d) Registration server
- e) H.323 Gateway
- 16. Below is H.323 protocol usage. What is (A) protocol?



- a) TCP
- b) UDP
- c) RTP
- d) RTSP
- e) HTTP

## Part III

ให้ตอบ T หากข้อความถูกต้อง ตอบ F หากข้อความไม่ถูกต้อง ตอบถูกได้ 1 คะแนนตอบผิดได้ -1 คะแนน

- 1. [\_\_\_] We can send analogue and digital signals directly over a medium.
- 2. [\_\_] The process of taking a group of bits from each input line for multiplexing is called interleaving.

| 3.  | [] To ensure that the receiver correctly reads the incoming bits, i.e., knows the incoming bit |
|-----|------------------------------------------------------------------------------------------------|
|     | boundaries to interpret a "1" and a "0", a known bit pattern is used between the frames. These |
|     | bits (or bit patterns) are called signal element bit(s).                                       |
| 4.  | [ ] The bandwidth usage by FM is higher than for AM                                            |
| 5.  | [] Streaming stored audio/video refers to the broadcasting of radio and TV programs            |
|     | through the Internet.                                                                          |
| 6.  | [] Spatial samples is the digital value of sampling points in a video frame.                   |
| 7.  | [] The picture quality of video is depended on the temporal sampling rate or frame rate.       |
| 8.  | [ ] P-frame contains only the changes from the preceding frame.                                |
| 9.  | [ ] Spread spectrum is a communication technique that spreads a narrowband                     |
|     | communication signal over a wide range of frequencies for transmission                         |
| 10. | [ ] Spread Frequency Hopping Spread Spectrum (FHSS) gives a better performance than DSSS       |
|     | (Direct Sequence Spread Spectrum)                                                              |

รหัส...... หน้าที่ 6