PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Final Examination: Semester II Date: March 6, 2014 Subject: 225-503 Production Systems & Management

Academic Year: 2013 Time: 13:30-16:30. Room: A401

Instructions

...

- There are 5 questions in 4 pages (include this cover page)
- Answer all 5 questions in the *answer-book* provided
- <u>Open-book exam.</u> All materials, books, papers, calculators and dictionaries are allowed.

Questions	Full Score	Assigned Score
Q1	20	
Q2	20	
Q3	25	
Q4	15	
Q5	20	
Total	100	

• Total score is 100

Assoc. Prof. Somchai Chuchom

ทุจริตในการสอบ โทษขั้นต่ำคือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา

Question 2 (20 marks)

n .

- 2-1) How is a pull system distinguished from a push system in production and inventory control?
- 2-2) Explain the concepts of the TPS (Toyota Production System) and show the details of tools or sub-systems that support the implementation of TPS successfully.

Question 3 (25 marks)

This LP model was solved by computer:

Maximize $15x_1 + 20x_2 + 14x_3$ where x_1 = quantity of product 1

 x_2 = quantity of product 1

 x_3 = quantity of product 1

subject to

Labor	$5x_1 + 6x_2 + 4x_3 \le$	210 hc	ours
Material	$10x_1 + 8x_2 + 5x_3$	٤	200 kilograms
Machine	$4x_1 + 2x_2 + 5x_3 \le$	170 mi	inutes
	x ₁ , x ₂ , x ₃	≥	0

The following information was obtained from the output report.

Variable	Final Value	Reduced	Objective	Allowable	Allowable		
		Cost	Coefficient	Increase	Decrease		
Product 1	0	-10.6	15	10.6	1E+30		
Product 2	5	0	20	2.4	10.6		
Product 3	32	0	14	36	1.5		

Total	profit	= 548.00
-------	--------	----------

Constraint	Final Value	Shadow	Constraint	Allowable	Allowable		
		Price	R.H. Side	Increase	Decrease		
Labor	158	0	210	1E+30	52		
Material	200	2.4	200	70.91	30		
Machine	170	0.4	170	30	120		

Answer the following questions

3.1 Which decision variables are basic?

3.2 Which constraints are binding for optimal solutions?

3.3 If the profit per unit of product 2 increased by \$2 (to be \$22), would the optimal value of the objective function change? Why?

3.4 If the available amount of material decreased by 30 kilograms, how would that affect the optimal value of the objective function?

3.5 If profit per unit on product 2 increased by \$1 and profit per unit on product 3 decreased by \$1, would the optimal value of the decision variables change? Why?3.6 Determine the 'Range of Optimality' for product 1, 2, and 3.

Question 4 (15 marks)

Explain the principles of the SMED (single-minute exchange of die) and show the case that applied SMED successfully.

Question 5 (20 marks)

Choose <u>only one</u> topic from the list below and explain in details on the selected topic to show that it is a useful tool for decision making in management system for manufacturing, and discuss on the reviewed papers or related work if possible. The lists of topics are:

- 5-1) Forecasting
- 5-2) Inventory Management
- 5-3) Management of Quality
- 5-4) Motivating and Training employees
- 5-5) Allocating facilities

Question 1 (20 marks)

1.1 What is group technology?

- 1.2 What are the production conditions under which group technology and cellular manufacturing are most applicable?
- 1.3 What are the two tasks that a company must undertake when it implements group technology?
- 1.4 Using the information given in Figure 1 to develop the form code (first five digits) in the Opitz System for the part illustrated in Figure 2.

	Digit 1				Digit 2		Digit 3				Digit 4			Digit 5																
	Part class		ext	Ex	ternal shape, il shape elements		Internal shape, internal shape elements					Plane surface machining				Auxiliary holes and gear teeth														
	L/D 0.5	0		Sn	nooth, no shape elements		0 "		No hole, no breakthrough		0	No surface machining		0		No auxiliary hole														
	0.5 < L/D < 3	1	P	niio	No shape elements		1	pped	No shape elements		1	Surface plane and/or curved in one direction, external		1		Axial, not on pitch circle diameter														
al parts	L/D 3	2	and to be	ooth	Thread	2	2	o one end	Thread		2	External plane surface related by graduation around the circle		2	eth	Axial on pitch circle diameter														
Rotation		3	0.000	dane or sm	Functional groove		3	Smoo	Functional groove		3	External groove and/or slot		3	No gear te	Radial, not on pitch circle diameter														
		4	- de	ciins	No shape elements		4	ends	No shape elements		4	External spline (polygon)		4		Axial and/or radial and/or other direction														
		5	2 oth	d to both	Thread		5	2 2 2 2 2	ed to both	5 of to both	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 cd to both	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 5 Stepped to both	Thread		5	External plane surface and/or slot, external spline		5		Axial and/or radial on PCD and/or other directions					
0		6		ordiane	Functional groove				9 Steppe	9 Steppe	9 Steppe	6	6	6	6 ;	6 3		9 Steppe	Steppe	Steppe	Steppe	Steppe	Steppe	Steppe	Functional groove		6	Internal plane surface and/or slot		6
inal parts		7		Fı	nctional cone		7 Fi		Functional cone		7	Internal spline (polygon)		7	eth	Bevel gear teeth														
donrotatic		8		OĮ	perating thread	nread		8 Op		Operating thread		8	Internal and external polygon, groove and/or slot		8	ith gear te	Other gear teeth													
Li Li		9			All others		9		All others		9	All others		9	W	All others														
								Fig	gure l																					

Figure 2 (Dimensions are in millimeters)