Name : \qquad
\qquad

การสอบปลายภาค ประจำภาคการศึกษาที่ ๒ วันพุธที่ ๒๖ กุมภาพันธ์ พ.ศ. ๒๕์๔ รายวิชา ๒๑๔-ต๒๔/๒๑๖-ต๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒ส์ฮ์ด
เวลา ๑๓.๓๐-๑๖.๓๐ น.
ห้องสอบ Robot, S817

ทุจิิตในการสอบ ปรับขั้นต่ำคือปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา
คำสั่ง
๑. ข้อสอมมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒๐	
๒	๒๐	
๓	๒๐	
๔	๒๐	
๔	๒๐	
รวม	๑๐๐	

Name \qquad
\qquad

1) 1.1) What is the type of each cam?

(b)
(a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
2)

Use the following pictures to give all correct answers to questions 1.2) - 1.5)

(a)

(b)

(c)

(d)
1.2) Which cams have a translating follower ? \qquad
1.3) Which cams have an oscillating follower? \qquad
1.4) Which cams and followers has sliding contacts? \qquad
1.5) All the cams above are (form closed / force-closed) \qquad

1.6) All the cams above are (form closed / force-closed) \qquad
1.7) Name the type of the following gears.

\qquad
\qquad
2) (a) For the gear train shown, if gear 2 is rotating with $\omega_{2}=600 \mathrm{rpm}$ clockwise, what is the speed and direction of gear 6 . And if gear 2 has 30 teeth, what is the number of teeth of gear 5 ?

(b) For the planetary gear train shown, if gear 2 is rotating with $\omega_{2}=200 \mathrm{rpm}$ clockwise and arm 3 is rotating with $\omega_{3}=500 \mathrm{rpm}$ counterclockwise, determine the rotational speed and direction of gear $7, \omega_{7}$.

Name : \qquad
\qquad
3) For the mechanism shown in the figure, sketch the free body diagrams of each link. What force P is necessary for equilibrium if $M_{12}=15 \mathrm{~N}-\mathrm{m}$? Neglect the friction between the slider and ground links.

Name : \qquad
\qquad
4) Link $3(A B)$ of the mechanism shown has its center of mass at G and the following data; $m_{3}=0.1 \mathrm{~kg}, I_{G}$ $=80 \mathrm{~kg}-\mathrm{mm}^{2}, \mathrm{R}_{\mathrm{AB}}=40 \mathrm{~mm}, \mathrm{R}_{\mathrm{AG}}=20 \mathrm{~mm}$. Point A is moving with a constant velocity, $\mathrm{v}_{\mathrm{A}}=20 \mathrm{~mm} / \mathrm{s}$ to the left, and the acceleration a_{G} is $30 \mathrm{~mm} / \mathrm{s}^{2}$, with $\alpha_{3}=1.3 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise. Assume no friction.
Determine (a) the inertia force, (b) the inertia moment, and (c) the force P applied to pin A along the slot to cause this motion of link 3.

Name \qquad
\qquad
5) A rotor has unbalance masses $m_{1}=20 \mathrm{~g}$, and $m_{2}=15 \mathrm{~g}$, located at radius 0.020 m on a shaft supported at the bearings A and B, as shown. Determine two correction masses, and the angular locations to be placed at the radius of 0.020 m in planes C and D so that the dynamic load on the bearings will be zero.

