ชื่อ-สกุล
คณะวิศวกรรมศาสตร์
มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 2
วันที่ 5 มีนาคม 2557
วิชา 215-332 Engineering Thermodynamics II
วิชา 216-332 Engineering Thermodynamics II

มหาวิทยาลัยสงขลานครินทร์

คำสั่ง

1. ข้อสอบมีทั้งหมด 6 ข้อ ให้ทำลงในข้อสอบทุกข้อ, กระดาษไม่พอให้ทำด้านหลัง ข้อสอบ
2. อนุญาตนำกระดาษ A 4 จำนวน 1 แผ่น เข้าห้องสอบได้
3. อนุญาตให้ใช้เครื่องคิดเลขได้ และ Dictionary เข้าห้องสอบได้

รศ.กำพล ประทีปชัยกูร

ผู้ออกข้อสอบ

ชื่อ-สกุล.
รหัส.

1) A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at $-30^{\circ} \mathrm{C}$ by rejecting its waste heat to cooling water that enters the condenser at $18^{\circ} \mathrm{C}$ at a rate of $0.25 \mathrm{~kg} / \mathrm{s}$ and leaves at $26^{\circ} \mathrm{C}$. The refrigerant enters the condenser at 1.2 MPa and $65^{\circ} \mathrm{C}$ and leaves at $42^{\circ} \mathrm{C}$. The inlet state of the compressor is 60 kPa and $-34^{\circ} \mathrm{C}$ and the compressor is estimated to gain a net heat of 450 W from the surroundings. Determine (a) the quality of the refrigerant at the evaporator inlet (b) the refrigeration load (heat transfer at the evaporator) (c) the COP of the refrigerator (d) the theoretical maximum refrigeration load for the same power input to the compressor.

FIGURE P11-17
2) The mass fractions of a mixture of gases are $15 \% \mathrm{~N}_{2}, 5 \% \mathrm{He}$, $60 \% \mathrm{CH}_{4}$ and $20 \% \mathrm{C}_{2} \mathrm{H}_{6}$. This mixture is enclosed in a $10 \mathrm{~m}^{3}$ rigid-well-insulated vessel at 200 kPa and $20^{\circ} \mathrm{C}$. A paddle wheel in the vessel is turned until 100 kJ of work have been done on the mixture. Calculate the mixture final pressure and
temperature. Given: molar mass of $\mathrm{N}_{2}, \mathrm{He}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ are 28.0, 4.0, 16.0, 30.0 respectively
C_{p} of $\mathrm{N}_{2}, \mathrm{He}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ are $1.039,5.1926,2.2537,1.7662$
$\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$ respectively
(25 points)
3) The air in a room has a dry-bulb temperature of $26^{\circ} \mathrm{C}$ and a wet-bulb temperature of $21^{\circ} \mathrm{C}$. Assuming a pressure of 100 kPa , determine (a) the specific humidity (b) the relative humidity
(c) the dew point temperature. (By calculation without psychrometric chart) Given: $\mathrm{C}_{\mathrm{p} \text {, air }}=1.005 \mathrm{~kJ} / \mathrm{kg}$.C
(10 points)
4) Air enters an air-conditioning system that uses refrigerant134 a at $30^{\circ} \mathrm{C}$ and 70% relative humidity at a rate of $4 \mathrm{~m}^{3} / \mathrm{min}$. The refrigerant enters the cooling section at 700 kPa with a quality of 20% and leaves as saturated vapor. The air is cooled to $20^{\circ} \mathrm{C}$ at a pressure of 1 atm . Determine (a) the rate of dehumidification (b) the rate of heat transfer (c) the mass flow rate of the refrigerant
(25 points)

5) n-Octane gas $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned with 100% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leaves at $257^{\circ} \mathrm{C}$. Calculate the heat transfer, in $\mathrm{kJ} / \mathrm{kg}$ fuel, during this combustion. Given: molar mass of $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})$, $\mathrm{M}_{\text {air }}$ are $114,29 \mathrm{~kg} / \mathrm{kmol}$ respectively
(25 points)

FIGURE P15-56
6) Liquid octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned in the constant pressure, adiabatic combustor of an aircraft engine with 40% excess air. The air enters this combustor at 600 kPa and $307^{\circ} \mathrm{C}$, and the fuel is injected into the combustor at $25^{\circ} \mathrm{C}$. Estimate the temperature at which the products of combustion leave the combustor.

