-

Name.....Student I.D.....

Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Final Exam for Semester: 2 Date: March 3, 2014 Subject: 237-320 Mechanical Behavior of Materials Academic Year: 2013 Time: 09.00-12.00 Room: S102

Instruction

- 1. There are 4 problem sets. Please do all of them. Write your answers in the space provided. If you need more space, you can write on the back of paper.
- 2. Text books, course notes, and other studying materials are not allowed.
- 3. Dictionary, calculator, and stationery are allowed.
- 4. This final exam is counted for 25% of the total grade.

Asst. Prof. Thawatchai Plookphol, Ph.D.

Problem No.	Full Score (points)	Student's Score (points)
1.	20	
2.	20	
3.	30	
4.	30	
Total	100	

237-320 Final Exam

٠

ŝ

Name.....Student I.D.....

1. Explain the following terms (please draw diagram or picture to support your answer).

1.1 Fatigue S-N curve (5 points)

1.2 Creep curve (5 points)

237-320 Final Exam	Page 3 of 8	
JameStudent I.D		
1.3 Paris's law for fatigue crack growth (5 points)		
1.4 Power law dislocation creep (5 points)		

•

ŝ

.

.

Name.....Student I.D.....

2. A fatigue specimen made of 7075-T6 aluminum alloy with diameter of 12.5 mm is subjected to cyclic axial load that varies from a maximum of 30,000 N tension to a minimum of 10,000 N compression. Calculate the following parameters: (20 points)

2.1 The mean stress, σ_m	(4 points)
2.2 The stress range, σ_r	(4 points)
2.3 The alternating stress, σ_a	(4 points)
2.4 The stress ratio, R	(4 points)
2.5 The amplitude ratio, A	(4 points)

Name.....Student I.D.....

3. A plate made of 6061-T651 aluminum alloy is subjected to constant amplitude uniaxial fatigue load to produce stresses varying from $\sigma_{max} = 200$ MPa tension and $\sigma_{min} = -20$ MPa compression. The properties of alloy are $\sigma_U = 310$ MPa and $K_{IC} = 29$ MPa \sqrt{m} . If the plate contains an initial through thickness edge crack of 2 mm, how many fatigue cycle will be required to break the plate. (30 points)

The fatigue crack growth data is shown below.

Given:

$$N_{f} = \frac{a_{f}^{-(p/2)+1} - a_{i}^{-(p/2)+1}}{\left(-\frac{p}{2}+1\right)A\sigma_{r}^{p}\pi^{p/2}\alpha^{p}} \qquad (p \neq 2)$$
$$K_{IC} = \alpha\sigma_{max}\sqrt{\pi a_{f}}$$

At fracture:

For an infinite wide plate, $\alpha = 1.12$

237-320 Final Exam	Page 6 of 8
Name Stud	ent I D
Name	

•

Name.....Student I.D.....

4 The heater tube in the ethylene plant at Maptaput, Rayong, was made of 25Cr-38Ni-Mo-Ti wrought alloy steel (HPM). The tube was designed to operate at internal pressure p = 580 kPa and T = 750 °C. The tube has diameter (*d*) of 60 mm and thickness (*t*) of 3 mm. A Larson-Miller plot of the HPM is given below.

Assume that the tube is a thin-walled pressure vessel, $\sigma_{hoop} = \frac{pd}{2t}$

- 4.1 For the original design, the operating internal pressure p = 580 kPa and temperature T = 750 °C
 - 4.1.1 Determine the hoop stress (in MPa) (5 points)
 - 4.1.2 What is the maximum life of the tube (in hours)? (10 points)
- 4.2 If the temperature of the tube is increased to T = 850 °C and the internal pressure is kept at 700 kPa, what is the maximum tube life? (15 points)

NameStudent I.D	237-320 Final Exam	Page 8 of 8
	NameStu	ıdent I.D