

PRINCE OF SONGKLA UNIVERSITY

FACULTY OF ENGINEERING

Mid-term Examination Paper: Semester I
Date: October $13^{\text {rd }}, 2014$

Academic year: 2014
Time: 9.00-12.00
Room: S817

Subject: 231-311 Momentum and Heat Transfer

ชื่อ-นามสกุล

\qquad รหัสนักศึกษา \qquad

หมายเหตุ

1. ข้อสอบมีทั้งหมด \qquad ..9.. ข้อ ในกระดาษคำถาม \qquad 10. \qquad หน้า (รวมปก) และเอกสาร

ประกอบการสอบ 4 หน้า (A1-A4)
2. ห้ามการหยิบยืมสิ่งใด ๆ ทั้งสิ้น จากผู้อื่น ๆ เว้นแต่ผู้คุมสอบจะหยิบยืมให้
3. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบออกจากห้องสอบ
4. ผู้ที่ประสงค์จะออกจากห้องสอบก่อนหมดเวลาสอบ แต่ต้องไม่น้อยกว่า 30 นาที

ให้ยกมือขออนุญาตจากผู้คุมสอบก่อนจะลุกจากที่นั่ง
5. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใด ๆ ทั้งสิ้น
6. ผู้ที่ปฏิบัติเข้าข่ายทุจริตในการสอบ ตามประกาศคณะวิศวกรรมศาสตร์

มีโทษ คือ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน 1 ภาคการศึกษา
7. ให้นักศึกษาสามารถนำสิ่งต่อไปนี้เข้าห้องสอบได้
จ เครื่องคิดเลข
\square พจนานุกรม
8. ให้ทำข้อสอบโดยใช้
\checkmark ดินสอ
(ป) ปากา

ข้อ	1	2	3	4	5	6	7	8	9	รวม
คะแนนเต็ม	10	15	5	15	10	10	15	5	5	90
ทำได้										

1. (10 points) The gage pressure of the air in the tank is measured to be 98.1 kPa . Determine the differential height h of the fluid B column in centimeter.

Student ID

5		1	0	1	1	0			

2. (15 points) A 4-m-long quarter-circular gate of radius 3 m and of negligible weight is hinged about its upper edge A. The gate controls the flow of water over the ledge at B, where the gate is pressed by a spring. Determine the magnitude and direction of the hydrostatic force acting on the gate.

Student ID 5 | 5 | | 1 | 0 | 1 | 1 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. (5 points)

(3.1) (2. points) Give two examples of the classification of fluid flows
(3.2) (3 points) Define each velocity profile whether it is one-, two- or three- dimensional flows.

Student ID | 5 | | 1 | 0 | 1 | 1 | 0 | | | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4. (15 points) Water enters a hydraulic turbine through a $50-\mathrm{cm}$-diameter pipe at a rate of $1 \mathrm{~m}^{3} / \mathrm{s}$ and exits through a $35-\mathrm{cm}$-diameter pipe. The pressure drop in the turbine is measured to be 150 kPa. For a combine turbine-generator efficiency of 85 percent, determine the net electric power output. The irreversible head loss is 0.11 m . Disregard the effect of the kinetic energy correction factors.

Student ID 5 | 5 | | 1 | 0 | 1 | 1 | 0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5. (10 points) Air flows through a pipe at a rate of $200 \mathrm{~L} / \mathrm{s}$. The pipe consists of two sections of diameters 20 cm and 10 cm with a smooth reduction section that connects them. The pressure difference between the two pipe sections is measured by a water manometer. Determine the difference height of water between the two pipe sections Take the air density to be $1.20 \mathrm{~kg} / \mathrm{m}^{3}$, and the kinetic energy correction factor to be 1.2.

6. (10 points) In a hydroelectric power plant, fluid A is suppiled to the turbine at a rate of 0.3 $\mathrm{m}^{3} / \mathrm{min}$ through a $200-\mathrm{km}$-long, $0.4-\mathrm{m}$-diameter cast iron pipe. The elevation difference between the free surface of the reservior and the turbine discharge is 115 m , and the combined turbinegenerator efficiency is 85 percent. Disregard the minor lossess, determine the power output of this plant. Given properties: The density and dynamic viscosity of fluid A are $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\boldsymbol{\mu}=$ $1.002 \times 10^{-2} \mathrm{~kg} / \mathrm{m} \mathrm{s}$.

5		1	0	1	1	0			

7. (15 points) Water at $20^{\circ} \mathrm{C}$ flows by gravity from a large reservoir at a high elevation to a smaller one through a $35-\mathrm{m}$-long, 5 -cm-diameter cast iron piping system that includes three standard flanged elbows, a well-rounded entrance, a sharp-edged exit, and a fully open gate valve. Determine the elevation z_{1} of the higher reservoir for a flow rate of $0.3 \mathrm{~m}^{3} / \mathrm{min}$. Given properties: The density and dynamic viscosity of water at $20^{\circ} \mathrm{C}$ are $\rho=998.0 \mathrm{~kg} / \mathrm{m}^{3}$ and $\boldsymbol{\mu}=1.002 \times 10^{-3}$ $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$. The roughness of cast iron pipe is $\boldsymbol{\varepsilon}=0.26 \mathrm{~mm}$. a well-rounded entrance ($\mathrm{K}_{\mathrm{L}}=0.03$), a standard flanged elbow ($K_{L}=0.3$), a fully open gate valve ($K_{L}=0.2$), a sharp-edged exit $\left(K_{L}=1\right)$

8. (10 points) Light oil at $20^{\circ} \mathrm{C}$ flows over a 5 -m-long flat plate with a free-stream velocity of 1.75 m / s. Determine the total drag force per unit width of the plate.

Given properties: The density and kinematic viscosity of light oil at $20^{\circ} \mathrm{C}$ are $\rho=888.1 \mathrm{~kg} / \mathrm{m}^{3}$ and $\boldsymbol{\nu}$ $=9.429 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.

9. (5 points) Sketch HGL and EGL lines of these fluid flows as shown in the below figures. Assuming these flows are idealized Bernoulli-types.
9.1 (2.5 points)

9.2 (2.5 points)

