Page 1 of 9

Name.....Student I.D.....

Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Mid-term Examination for Semester: 1	Academic Year: 2014
Date: October 15, 2014	Time: 09.00 - 12.00
Subject: 237-407 Failure Mechanics and Analysis	Room: R200

Instructions

- There are 3 problem sets (9 pages including cover page). Please do all of them.
 Write your answers in the space provided.
- 2. Dictionary and calculator are allowed.
- 3. Text books and course notes are not allowed.
- 4. This mid-term exam is accounted for 25% of total grade.

Asst. Prof. Dr. Thawatchai Plookphol

Problem no.	Full score	Student's score
1	40	
2	40	
3	40	
Total	120	

237-407 Failure Mechanics and Analysis	Mid-term Examination	Page 2 of 9
Name	.Student I.D	
Problem 1 (40 points)		
Explain the following terms: (please give ex	kample and/or draw picture, d	iagram to support
your answer)		
1.1 Griffith's fracture theory for brittle mater	ials (10 points)	
		•••••
1.2 Irwin's concept of stress intensity factor I	(10 points)	
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		••••••
		••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • • •

237-407 Failure Mechanics and Analysis	Mid-term Examination	Page 3 of 9
Name	.Student I.D	
1.3 Fracture toughness, K_{IC} (10 points)		
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
1.4 Plastic zona (10 nainta)		
		••••••
		•••••
		•••••
		•••••
••••••		

237-407	Failure Mechanics and Analysis	Mid-term Examination	Page 4 of 9
Name		Student I.D	
Problem	1 2 (40 points)		
2.1 Calcu	ulations based on the cohesion force	e suggest that the tensile strengt	h of glass should
be 10 GF	Pa. However, a tensile strength of or	nly 1.5 % of this value is found	experimentally.
Griffith s	supposed that this low value was du	e to the presence of cracks in th	ne glass. Calculate
the size 2	2 <i>a</i> of a crack normal to the tensile d	irection in a plate. (20 points)	
Given:	Young's modulus $E = 70$ GPa		
	Surface tension $\gamma_s = 0.5 \text{ J/m}^2$		
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			•••••
•••••			•••••
•••••			•••••
•••••			
•••••			
•••••			
•••••			
•••••			•••••
•••••			
			•••••

237-407	Failure Mechanics and Analysis	Mid-term Examination	Page 5 of 9
Name		Student I.D	
2.2 A pla reduction to the ten Given:	te made of maraging steel has a ten a in strength caused by a crack in thi sile direction. (20 points) Young's modulus $E = 200$ GPa	sile strength of 1900 MPa. Calc is plate with a length $2a = 3$ mm	ulate the oriented normal
	Surface tension $\gamma_s = 2$ J/m Plastic energy nor unit ereck surf.	$-2 \times 10^4 \mathrm{J/m^2}$	
	Plastic energy per unit crack surfa	ace area $\gamma_p = 2 \times 10^{\circ} \text{ J/m}^2$	
			••••••
			••••••
			••••••
•••••			
•••••			•••••
•••••		•••••	•••••
•••••		•••••	•••••
•••••		•••••	•••••
•••••		•••••	•••••
•••••		•••••	•••••
		•••••	••••••
•••••			
•••••			
•••••			
•••••			
•••••			
			•••••

Name.....Student I.D.....

Problem 3 (40 points)

A 7049-T73 aluminum forging is the material of choice for an 8-cm-internal-diameter hydraulic actuator cylindrical housing that has a wall thickness of 10 mm. After manufacture, each cylinder is subjected to a safety check, involving a single fluid overpressurization that generates a hoop stress no higher than $50\% \sigma_{YS}$. The component design calls for an operating internal fluid pressure, corresponding to a hoop stress no higher than $25\% \sigma_{YS}$. Prior to overpressurization, a 2-mm-deep semicircular surface flaw that was oriented normal to the hoop stress direction was discovered in one cylinder. Given that $\sigma_{YS} = 460$ MPa and $K_{IC} = 23$ MPa \sqrt{m} , would the cylinder have survived the overpressurization test? Please show your calculation to support your answer.

