PRINCE OF SONGKLA UNIVERSITY
 FACULTY OF ENGINEERING
 Department of Computer Engineering

Midterm Examination: Semester 2
Date: 16th March, 2015
Subject Numbers: 242-213 and 241-303
Subject Title: Discrete Mathematics
Lecturer: Aj. Andrew Davison

Academic Year: 2014-2015
Time: 9:00-11:00 (2 hours)
Room: Robot Head and AZOO A 400

Exam Duration: 2 hours
This paper has 8 questions, in 3 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

Question 1

Show that $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \vee \mathrm{q})$ is a tautology by using rules of inference. Do not use truth tables.

Question 2

(20 minutes; 20 marks)
Consider these statements: the first three are assumptions and the fourth is a conclusion.

- "All hummingbirds are brightly colored."
- "No large birds live on honey."
- "Birds that do not live on honey are not brightly colored."
- "Hummingbirds are not large."

Let $P(x), Q(x), R(x)$, and $S(x)$ be the statements " x is a hummingbird," " x is large," " x lives on honey," and " x is brightly colored". Assume that the domain consists of all birds.
a) Express the statements using quantifiers and $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x}), \mathrm{R}(\mathrm{x})$, and $\mathrm{S}(\mathrm{x})$.
b) Show that the conclusion is provable from the three assumptions.

Question 3

(15 minutes; 15 marks)
Prove by contrapositive that if $\mathrm{n}=\mathrm{a}^{*} \mathrm{~b}$, where a and b are positive integers, then $\mathrm{a} \leq \sqrt{n}$ or $\mathrm{b} \leq \sqrt{n}$.

Question 4

(15 minutes; 15 marks)
Prove by contradiction that if n is an integer and $n^{3}+5$ is odd, then n is even.

Question 5

 (20 minutes; 20 marks)Use a proof by cases to show that $|x y|=|x||y|$, where x and y are real numbers. $|a|$ is the absolute value of a . $|\mathrm{a}|$ equals a when $\mathrm{a} \geq 0$ and -a when $\mathrm{a}<0$.

Question 6

For each of the following relations on the set $\{1,2,3,4\}$, state whether the relation is reflexive, symmetric, transitive, or none of those properties. Note: some of the relations satisfy more than one property.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
c) $\{(2,4),(4,2)\}$
d) $\{(1,1),(2,2),(3,3),(4,4)\}$
e) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Question 7

(10 minutes; 10 marks)
Determine whether each of these functions is bijective from \mathbf{R} to \mathbf{R}.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $f(x)=2 x+1$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{3}$
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Question 8

(15 minutes; 15 marks)
Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit.
How many possible passwords are there?
Do not only write a single numerical answer, also explain the answer in words.
Express numerical values in power form (e.g. 9^{2}), rather than as integers (81).

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING
 Department of Computer Engineering

Midterm Examination: Semester 2
Date: 16th March, 2015
Subject Numbers: 242-213 and 241-303
Subject Title: Discrete Mathematics
Lecturer: Aj. Andrew Davison

Academic Year: 2014-2015
Time: 9:00-11:00 (2 hours)
Room: Robot Head and A200 A 400

Exam Duration: 2 hours
This paper has 8 questions, in 3 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

Question 1

(10 minutes; 10 marks)
Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology by using rules of inference. Do not use truth tables.

Question 2

(20 minutes; 20 marks)
Consider these statements: the first three are assumptions and the fourth is a conclusion.

- "All hummingbirds are brightly colored."
- "No large birds live on honey."
- "Birds that do not live on honey are not brightly colored."
- "Hummingbirds are not large."

Let $P(x), Q(x), R(x)$, and $S(x)$ be the statements " x is a hummingbird," " x is large," " x lives on honey," and " x is brightly colored". Assume that the domain consists of all birds.
a) Express the statements using quantifiers and $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x}), \mathrm{R}(\mathrm{x})$, and $\mathrm{S}(\mathrm{x})$.
b) Show that the conclusion is provable from the three assumptions. (12)

Question 3

Prove by contrapositive that if $\mathrm{n}=\mathrm{a} * \mathrm{~b}$, where a and b are positive integers, then $\mathrm{a} \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Question 4

(15 minutes; 15 marks)
Prove by contradiction that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even.

Question 5

Use a proof by cases to show that $|x y|=|x \| y|$, where x and y are real numbers. $|a|$ is the absolute value of a . $|\mathrm{a}|$ equals a when $\mathrm{a} \geq 0$ and -a when $\mathrm{a}<0$.

Question 6

For each of the following relations on the set $\{1,2,3,4\}$, state whether the relation is reflexive, symmetric, transitive, or none of those properties. Note: some of the relations satisfy more than one property.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
c) $\{(2,4),(4,2)\}$
d) $\{(1,1),(2,2),(3,3),(4,4)\}$
e) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Question 7

(10 minutes; 10 marks)
Determine whether each of these functions is bijective from \mathbf{R} to \mathbf{R}.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $f(x)=2 x+1$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{3}$
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Question 8

(15 minutes; 15 marks)
Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit.
How many possible passwords are there?
Do not only write a single numerical answer, also explain the answer in words.
Express numerical values in power form (e.g. 9^{2}), rather than as integers (81).

PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING
 Department of Computer Engineering

Midterm Examination: Semester 2
Academic Year: 2014-2015
Date: 16th March, 2015
Time: 9:00-11:00 (2 hours)
Room: Robot Head and AZOO
Subject Title: Discrete Mathematics
Lecturer: Aj. Andrew Davison

Exam Duration: 2 hours

This paper has 8 questions, in 3 pages.

Authorized Materials:

- Writing instruments (e.g. pens, pencils).
- Books (e.g. dictionaries) and calculators are not permitted.

Instructions to Students:

- Answer questions in English. Perfect English is not required.
- Attempt all questions.
- Write your answers in an answer book.
- Start your answer to each question on a new page
- Clearly number your answers.
- Any unreadable parts will be considered wrong.
- When writing programs, use good layout, and short comments; marks will not be deducted for minor syntax errors.
- The marks for each part of a question are given in brackets (...).

Question 1

Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology by using rules of inference. Do not use truth tables.

Question 2

(20 minutes; 20 marks)
Consider these statements: the first three are assumptions and the fourth is a conclusion.

- "All hummingbirds are brightly colored."
- "No large birds live on honey."
- "Birds that do not live on honey are not brightly colored."
- "Hummingbirds are not large."

Let $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x}), \mathrm{R}(\mathrm{x})$, and $\mathrm{S}(\mathrm{x})$ be the statements " x is a hummingbird," " x is large," " x lives on honey," and " x is brightly colored". Assume that the domain consists of all birds.
a) Express the statements using quantifiers and $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x}), \mathrm{R}(\mathrm{x})$, and $\mathrm{S}(\mathrm{x})$.
b) Show that the conclusion is provable from the three assumptions. (12)

Question 3

Prove by contrapositive that if $\mathrm{n}=\mathrm{a} * \mathrm{~b}$, where a and b are positive integers, then a $\leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Question 4

(15 minutes; 15 marks)
Prove by contradiction that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even.

Question 5

Use a proof by cases to show that $|x y|=|x||y|$, where x and y are real numbers. $|a|$ is the absolute value of a . |a| equals a when $\mathrm{a} \geq 0$ and -a when $\mathrm{a}<0$.

Question 6

(15 minutes; 15 marks)
For each of the following relations on the set $\{1,2,3,4\}$, state whether the relation is reflexive, symmetric, transitive, or none of those properties. Note: some of the relations satisfy more than one property.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
c) $\{(2,4),(4,2)\}$
d) $\{(1,1),(2,2),(3,3),(4,4)\}$
e) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$

Question 7

 (10 minutes; 10 marks)Determine whether each of these functions is bijective from \mathbf{R} to \mathbf{R}.
Do not write a single-word answer, explain each answer in words and diagrams.
a) $f(x)=2 x+1$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{3}$
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Question 8

(15 minutes; 15 marks)
Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit.
How many possible passwords are there?
Do not only write a single numerical answer, also explain the answer in words.
Express numerical values in power form (e.g. 9^{2}), rather than as integers (81).

