\qquad
\qquad

คณะวิศวกรรมศาสตร์
 มหาวิทยาลัยสงขลานครินทร์

การสอบกลางภาค ประจำภาคการศึกษาที่ ๒ วันศุกร์ที่ ๒๐ มีนาคม พ.ศ. ๒๔๔๙๗
วิชา ๒๑๔-ตเ๒๔ : กลศาสตร์เครื่องจักรกล

ประจำปีการศึกษา ๒๔๔ఱ
เวลา ๙.๐๐-๑๒.๐๐ น. ห้องสอบ Robot

คำสั่ง

๑. ข้อสอบมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
๒. อนุญาตให้ใช้เครื่องคิดเลขได้
๓. ให้ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมธางกูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒๐	
๒	๒๐	
๓	๒๐	
๔	๒๐	
๔	๒๐	
รวม	๑๐๐	

\qquad
\qquad

1) (a) How many degrees of freedom does this joint have? \qquad Is the joint lower or higher pair? \qquad

(b) Determine the mobility of this system.

(c) What is the purpose of this mechanism?

\qquad
\qquad
(d) Is this mechanism oscillating or reciprocating ?

(e) How many inversions does this mechanism have ?

How many instantaneous centers does the mechanism have?
\qquad
\qquad
2) The Whitworth quick-return mechanism is shown in the figure below.
(a) Draw the mechanism when link 6 is at its both limit positions, and determine the stroke of link 6.
(b) If link 2 is rotating with a constant speed, assuming the forward motion of link 4 is to the right, which direction must ω_{2} be so that it is a quick-return ?
(c) Determine the time ratio between advance (forward) stroke and return stroke. \qquad

\qquad
3) The geared-5-bar mechanism shown in the figure has drum 6 rolling on the slope. At this position link 2 is rotating with an angular velocity of $2 \mathrm{rad} / \mathrm{s}$ clockwise. Determine the velocity of the slider 4 , and the angular velocity of links 3,5 , and 6 . Draw the velocity image of this mechanism.

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$

Ov_{+}

Name : \qquad
\qquad
4) Triangle $A B C$ has sliding contact with the inclined wall at A, and sliding contact with the floor at B. $A B$ is $80 \mathrm{~mm}, A C$ and $B C$ are 50 mm . At the position shown point B is sliding to the right with a constant speed at $70 \mathrm{~mm} / \mathrm{s}$. Determine the acceleration of point C and also the angular acceleration of ABC .

$$
\mathrm{Oa}^{+} \quad \text { Scale } 1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}^{2}
$$

\qquad
\qquad
5) The mechanism shown has link 2 rotating with an angular velocity of 1 rad/s clockwise (CW), and an angular acceleration of $1 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise (CCW). Using graphical method to determine the angular velocity, and the angular acceleration of link 4.

