Name
Student I.D.

Department of Mining and Materials Engineering

Faculty of Engineering

Prince of Songkla University

Mid-Term Exam for Semester: 2
Date: March 19, 2015
Subject: 237-320 Mechanical Behavior of Materials

Academic Year: 2014
Time: 09.00-12.00
Room: A203

Instruction

1. There are 4 problem sets. Please do all of them. Write your answers in the space provided. If you need more space, you can write on the back of paper.
2. Text books, course notes and other studying materials are not allowed.
3. Dictionary, calculator, and stationery are allowed.
4. This mid-term exam is accounted for 25% of the total grade.

Asst. Prof. Dr. Thawatchai Plookphol

Problem No.	Full Score	Student's Score
1.	40	
2.	15	
3.	20	
4.	25	
Total	100	

Name

Student I.D

1 A 3-D state of stress is given by

$$
==\left[\begin{array}{ccc}
50 & -20 & 0 \\
-20 & 80 & 60 \\
0 & 60 & -70
\end{array}\right] \mathrm{MPa} .
$$

1.1 Determine the three principal stresses. (15 points)
1.2 Determine the direction of the highest principal stress $\left(\sigma_{1}\right)$. (10 points)
1.3 Determine the maximum shear stress. (5 points)
1.4 Draw 3-D Mohr's circles from the principal stresses and mark the principal stresses and the maximum shear stress on the Mohr's circles. (10 points)
Name...Student I.D
\qquad
\qquadNameStudent I.D

Name

Student I.D

2. A sample of material subjected to a compressive stress σ_{1} is confined so that it cannot deform in the 3-direction as shown in the figure below. Assume that there is no friction against the die, so that deformation can freely occur in the 2-direction. Assume further that the material is isotropic and exhibits linear elastic behavior.

If σ_{1} has a magnitude of -100 MPa and the material is made of copper alloy $E=110 \mathrm{GPa}$, and v $=0.33$. Determine the followings:
2.1 The stress that develops in the 3-direction $\left(\sigma_{\mathfrak{3}}\right)$. (5 points)
2.2 The strain in the 1-direction $\left(\varepsilon_{1}\right)$. (5 points)
2.3 The strain in the 2 -direction $\left(\varepsilon_{2}\right)$. (5 points)
\qquad

Name
Student I.D
3. Copper single crystal has compliance (S) constants of

$$
\begin{array}{ll}
S_{l I}=14.9 & \mathrm{TPa}^{-1} \\
S_{12}=-6.2 & \mathrm{TPa}^{-1} \\
S_{44}=13.3 & \mathrm{TPa}^{-1} .
\end{array}
$$

3.1 Calculate Young's moduli (E) in the [100], [110] and [111] directions. (15 points) 3.2 What conclusion can be drawn from the result in 3.1 ? (5 points)
Name
Student I.D

Name
.Student I.D
4. An aluminum crystal is subjected to stress $[\sigma]$,

$$
[\sigma]=\left[\begin{array}{ccc}
50 & 20 & 0 \\
20 & 100 & 50 \\
0 & 50 & -100
\end{array}\right] \mathrm{MPa} .
$$

The crystal has compliance constants of

$$
\begin{array}{ll}
S_{l I}=15.7 & \mathrm{TPa}^{-1} \\
S_{l 2}=-5.7 & \mathrm{TPa}^{-1} \\
S_{44}=35.1 & \mathrm{TPa}^{-1} .
\end{array}
$$

Calculate the strain $[\varepsilon]_{\text {that }}$ is caused by the applied stress $[\sigma]$. (25 points)
\qquad
Name
Student I.D

Formula

For 3-D stress :
$\operatorname{det}\left[\begin{array}{ccc}\sigma-\sigma_{x x} & -\tau_{y x} & -\tau_{z x} \\ -\tau_{x y} & \sigma-\sigma_{y y} & -\tau_{z y} \\ -\tau_{x z} & -\tau_{y z} & \sigma-\sigma_{z z}\end{array}\right]=0$
$I_{1}=\sigma_{x x}+\sigma_{y y}+\sigma_{z z}$
$I_{2}=\sigma_{x x} \sigma_{y y}+\sigma_{y y} \sigma_{z z}+\sigma_{z z} \sigma_{x x}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{z x}^{2}$
$I_{3}=\sigma_{x x} \sigma_{y y} \sigma_{z z}+2 \tau_{x y} \tau_{y z} \tau_{z x}-\sigma_{x x} \tau_{y z}^{2}-\sigma_{y y} \tau_{z x}^{2}-\sigma_{z z} \tau_{x y}^{2}$
$\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0$

Direction of the greatest principal stress $\left(\sigma_{1}\right)$
$\left(\sigma_{x x}-\sigma_{1}\right) l_{1}+\tau_{x y} m_{1}+\tau_{x z} n_{1}=0$
$\tau_{z x} l_{1}+\tau_{z y} m_{1}+\left(\sigma_{z z}-\sigma_{1}\right) n_{1}=0$
$l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$
where, l_{1}, m_{1}, n_{1} are direction cosines of σ_{1}

Plane strain situation : $\varepsilon_{3}=0, \sigma_{3} \neq 0$
$\sigma_{3}=v\left(\sigma_{1}+\sigma_{2}\right)$
$\varepsilon_{1}=\frac{1}{E}\left[\left(1-v^{2}\right) \sigma_{1}-v(1+v) \sigma_{2}\right]$
$\varepsilon_{2}=\frac{1}{E}\left[\left(1-v^{2}\right) \sigma_{2}-v(1+v) \sigma_{1}\right]$
$\varepsilon_{3}=0$

For cubic crystals :

$$
\begin{aligned}
& \frac{1}{E}=S_{11}-2\left[\left(S_{11}-S_{22}\right)-\frac{1}{2} S_{44}\right]\left(l^{2} m^{2}+m^{2} n^{2}+l^{2} n^{2}\right) \\
& {[\varepsilon]=[S][\sigma]} \\
& {[\varepsilon]=\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\gamma_{4} \\
\gamma_{5} \\
\gamma_{6}
\end{array}\right]} \\
& {[\sigma]=\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{4} \\
\tau_{5} \\
\tau_{6}
\end{array}\right]} \\
& {[S]=\left[\begin{array}{cccccc}
S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \\
\cdot & S_{11} & S_{12} & 0 & 0 & 0 \\
\cdot & \cdot & S_{11} & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & S_{44} & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & S_{44} & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & S_{44}
\end{array}\right]}
\end{aligned}
$$

