Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Mid-Term Exam for Semester: 2	Academic Year: 2014
Date: March 19, 2015	Time: 09.00-12.00
Subject: 237-320 Mechanical Behavior of Materials	Room: A203

Instruction

- 1. There are 4 problem sets. Please do all of them. Write your answers in the space provided. If you need more space, you can write on the back of paper.
- 2. Text books, course notes and other studying materials are not allowed.
- 3. Dictionary, calculator, and stationery are allowed.
- 4. This mid-term exam is accounted for 25% of the total grade.

Asst. Prof. Dr. Thawatchai Plookphol

Problem No.	Full Score	Student's Score
1.	40	
2.	15	
3.	20	
4.	25	
Total	100	

1 A 3-D state of stress is given by

$$= \begin{bmatrix} 50 & -20 & 0 \\ -20 & 80 & 60 \\ 0 & 60 & -70 \end{bmatrix}$$
MPa.

- 1.1 Determine the three principal stresses. (15 points)
- 1.2 Determine the direction of the highest principal stress (σ_1). (10 points)
- 1.3 Determine the maximum shear stress. (5 points)
- 1.4 Draw 3-D Mohr's circles from the principal stresses and mark the principal stresses and the maximum shear stress on the Mohr's circles. (10 points)

NameStudent I.D

Name	.Student I.D

237-320 Mechanical Behavior of Materials

Page 5 of 12

Name.....Student I.D.....

2. A sample of material subjected to a compressive stress σ_1 is confined so that it cannot deform in the 3-direction as shown in the figure below. Assume that there is no friction against the die, so that deformation can freely occur in the 2-direction. Assume further that the material is isotropic and exhibits linear elastic behavior.

If σ_1 has a magnitude of -100 MPa and the material is made of copper alloy E = 110 GPa, and v = 0.33. Determine the followings:

2.1 The stress that develops in the 3-direction (σ_3). (5 points)

- 2.2 The strain in the 1-direction (ε_1). (5 points)
- 2.3 The strain in the 2-direction (ε_2). (5 points)

 ••••••

Name	.Student I.D
••••••	
••••••	
•••••••	
•••••••••••••••••••••••••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	

3. Copper single crystal has compliance (S) constants of

$S_{11} = 14.9$	TPa ⁻¹
$S_{12} = -6.2$	TPa ⁻¹
$S_{44} = 13.3$	TPa ⁻¹ .

3.1 Calculate Young's moduli (E) in the [100], [110] and [111] directions. (15 points)3.2 What conclusion can be drawn from the result in 3.1? (5 points)

.....

Name	Student I.D
·	

237-320 Mechanical Behavior of Materials

Page 9 of 12

Name.....Student I.D.....

4. An aluminum crystal is subjected to stress $[\sigma]$,

$$[\sigma] = \begin{bmatrix} 50 & 20 & 0 \\ 20 & 100 & 50 \\ 0 & 50 & -100 \end{bmatrix}$$
 MPa.

The crystal has compliance constants of

$$S_{11} = 15.7$$
 TPa⁻¹
 $S_{12} = -5.7$ TPa⁻¹
 $S_{44} = 35.1$ TPa⁻¹.

Calculate the strain $[\mathcal{E}]$ that is caused by the applied stress $[\sigma]$. (25 points)

Name	Student I.D

Formula

For 3 - D stress :

$$det\begin{bmatrix} \sigma - \sigma_{xx} & -\tau_{yx} & -\tau_{zx} \\ -\tau_{xy} & \sigma - \sigma_{yy} & -\tau_{zy} \\ -\tau_{xz} & -\tau_{yz} & \sigma - \sigma_{zz} \end{bmatrix} = 0$$

$$I_{1} = \sigma_{xx} + \sigma_{yy} + \sigma_{zz}$$

$$I_{2} = \sigma_{xx}\sigma_{yy} + \sigma_{yy}\sigma_{zz} + \sigma_{zz}\sigma_{xx} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{zx}^{2}$$

$$I_{3} = \sigma_{xx}\sigma_{yy}\sigma_{zz} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{xx}\tau_{yz}^{2} - \sigma_{yy}\tau_{zx}^{2} - \sigma_{zz}\tau_{xy}^{2}$$

$$\sigma^{3} - I_{1}\sigma^{2} + I_{2}\sigma - I_{3} = 0$$

Direction of the greatest principal stress (σ_1) $(\sigma_{xx} - \sigma_1)l_1 + \tau_{xy}m_1 + \tau_{xz}n_1 = 0$ $\tau_{zx}l_1 + \tau_{zy}m_1 + (\sigma_{zz} - \sigma_1)n_1 = 0$ $l_1^2 + m_1^2 + n_1^2 = 1$ where, l_1, m_1, n_1 are direction cosines of σ_1

Plane strain situation :
$$\varepsilon_3 = 0$$
, $\sigma_3 \neq 0$
 $\sigma_3 = \nu(\sigma_1 + \sigma_2)$
 $\varepsilon_1 = \frac{1}{E} [(1 - \nu^2)\sigma_1 - \nu(1 + \nu)\sigma_2]$
 $\varepsilon_2 = \frac{1}{E} [(1 - \nu^2)\sigma_2 - \nu(1 + \nu)\sigma_1]$
 $\varepsilon_3 = 0$

For cubic crystals: $\frac{1}{E} = S_{11} - 2 \left[\left(S_{11} - S_{22} \right) - \frac{1}{2} S_{44} \right] \left(l^2 m^2 + m^2 n^2 + l^2 n^2 \right)$ $[\varepsilon] = [S][\sigma]$ $\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{vmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_4 \\ \gamma_5 \end{vmatrix}$ $\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_4 \\ \tau_5 \end{bmatrix}$ $[S] = \begin{bmatrix} S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \\ \cdot & S_{11} & S_{12} & 0 & 0 & 0 \\ \cdot & \cdot & S_{11} & 0 & 0 & 0 \\ \cdot & \cdot & \cdot & S_{44} & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & S_{44} & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & S_{44} \end{bmatrix}$