Name \qquad Student ID \# : \qquad

คณะวิศวกรรมศาสตร์
 มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ ๒ วันศุกร์ที่ ๘ พฤษภาคม พ.ศ. ซ๔๔ส๘

ประจำปีการึึกษา ๒๔๔ญ์
เวลา ดต.mo-ศ..๓า น.
ห้องสอบ หัวหุ่น

ทุจริตในการสอบ ปรับตกในรายวิชาที่ทุจริต และพักการเรียน ๑ ภาคการศึกษา
คำสั่ง
๑. ข้อสอบมีทั้งหมด ๔ ข้อ ให้ทำลงในข้อสอบทุกข้อ
๒. อนุฌาตให้ใช้เครื่องคิดเเขได้
๓. ให่ใช้เครื่องมือเขียนแบบได้
๔. ไม่อนุญาตเอกสารอื่น ๆ

รศ.ดร. วรวุธ วิสุทธิ์เมถางทูร
ผู้ออกข้อสอบ

ข้อ	คะแนนเต็ม	ได้
๑	๒o	
b	๒o	
๓	bo	
σ°	๒o	
๔	bo	
รวม	๑๐○	

\qquad
\qquad

1) The knife-edge follower of a plate cam is to start with a 120° rise with two parabola sections of 60° each. The two parabola sections must joined with a continuous slope. After that, the follower dwells for 60°, and then fully returns with simple harmonic motion in 90° of cam rotation. Finally, it dwells for 90° to complete the full turn of cam. If the radius of the prime circle is 3 cm , draw the displacement diagram, and the cam profile for clockwise cam rotation.

\qquad
\qquad
2) (a) For the gear train shown, if gear 2 is rotating with $\omega_{2}=600 \mathrm{rpm}$ counterclockwise, what is the speed and direction of gear 6 ?

(b) For the planetary gear train shown, if gear 2 is rotating with $\omega_{2}=400 \mathrm{rpm}$ counterclockwise and arm 3 is rotating with $\omega_{3}=200 \mathrm{rpm}$ clockwise, determine the rotational speed and direction of gear $7, \omega_{7}$.

Name: \qquad
\qquad
3) For the mechanism shown, if force $P=80 \mathrm{~N}$ is applied to the slider 6 as shown. Determine the magnitude and direction of moment M_{12}, acting on link 2, to keep the mechanism in equilibrium. Also show the constraint forces on each link.

\qquad
\qquad
4) Link $3(A B)$ of the mechanism shown has its center of mass at G and the following data; $m_{3}=1 \mathrm{~kg}, \mathrm{I}_{\mathrm{G}}=$ $3200 \mathrm{~kg}-\mathrm{mm}^{2}, R_{A B}=65 \mathrm{~mm}, R_{A G}=32.5 \mathrm{~mm}$. Point A is moving with a constant velocity, $v_{A}=60 \mathrm{~mm} / \mathrm{s}$ downward. It can be determined that the acceleration a_{G} is $35.2 \mathrm{~mm} / \mathrm{s}^{2}$ to the right, with $\alpha_{3}=0.417 \mathrm{rad} / \mathrm{s}^{2}$ clockwise. Assume no friction. Determine (a) the inertia force, (b) the inertia moment, and (c) the force P applied at point A along the slot to cause this motion of link 3.

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s}$

Scale $1 \mathrm{~mm}: 1 \mathrm{~mm} / \mathrm{s} 2$

\qquad
\qquad
5) A rotor has unbalance masses $m_{1}=15 \mathrm{~g}$, and $m_{2}=10 \mathrm{~g}$, located at radius 0.020 m , on a shaft supported at the bearings A and B, as shown. Determine two correction masses, and angular locations to be placed at the radius of 0.020 m in the planes C and D , so that the dynamic load on the bearings will be zero.

