# มหาวิทยาลัยสงขลานครินทร์ 

## คณะวิศวกรรมศาสตร์

| การสอบปลายภาค ประจำภาคการศึกษาที่ 2 | ปีการศึกษา 2557 |
| :--- | :--- |
| วันที่ 9 พฤษภาคม 2558 | เวลา 13.30-16.30 น. |
| วิชา $215-333$ Heat transfer | หัวหุ่น |

ดำสั่ง

1. ข้อสอบมีทั้งหมด 5 ข้อ ให้ทำข้อสอบทั้งหมดในสมุดคำตอบ คะแนนเต็ม 100 คะแนน
2. อนญาตให้นำเครื่องคิดเลข เอกสาร ตำรา Dictionary เข้าห้องสอบได้
3. ห้ามยืมอุปกรณ์ใดๆในห้องสอบ

ผู้ออกข้อสอบ ดร.ภาสกร เวสสะโกศล

1. Consider the flow of water at a rate of $0.01 \mathrm{~kg} / \mathrm{s}$ through an equilateral triangular duct of sides 2 cm and whose walls are kept at a uniform temperature $100^{\circ} \mathrm{C}$. Assume that the flow is hydrodynamically and thermally developed. [25 Mark]
(a) Determine the duct length required to heat the water from $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
(b) Check if the flow is laminar or not.
2.1 A small surface of area $A=8 \mathrm{~cm}^{2}$ is subjected to radiation of constant intensity $1=10^{5}$ $W /\left(m^{2}\right.$. sr) over the solid angle subtended by $0 \leq \phi \leq 2 \pi, 0 \leq \theta \leq \pi / 3$. Calculate the radiation energy received by the surface. [7 Mark]
2.2 A radiation detector is aimed at a small horizontal surface a distance $L=5 \mathrm{~cm}$ away. The line joining the detector axis to the hot object makes $\theta=45^{\circ}$ with the normal to the surface of the hot object. The aperture has an area of $0.1 \mathrm{~cm}^{2}$. [8 Mark]
(a) Determine the solid angle subtended by the aperture with respect to the point on the surface of the hot object.
(b) If the hot object is a blackbody of area $d A_{1}=100 \mathrm{~cm}^{2}$ at temperature 1000 K , determine the energy intercepted by the aperture.
2. A double pipe counter flow heat exchanger is used to cool $0.03 \mathrm{~kg} / \mathrm{s}$ of benzene from 360 K to 310 K with a counterflow of $0.02 \mathrm{~kg} / \mathrm{s}$ of water at 290 K . If the outer diameter of inner tube is 2 cm and the overall heat transfer coefficient based on the outside area is 650 $\mathrm{W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)$, determine the required length of the exchanger. Take the specific heats of benzene and water as 1880 and $4175 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})$, respectively. [20 Mark]
3. A vertical plate 0.1 m high (along the vertical direction) and 1 m wide (normal to the paper), maintained at a uniform temperature 320 K , is immersed in water at 300 K . [25 Mark]
(a) Determine the boundary-layer thickness $\delta(x)$ at $x=0.1 \mathrm{~m}$.
(b) Calculate the local heat transfer coefficient at $x=0.1 \mathrm{~m}$.
4. Consider the laminar boundary-layer flow of liquid metal with the velocity $u_{\infty}$ and temperature $T_{\infty}$ along a flat plate kept at a uniform temperature $T_{w}$. Derive the expressions for the thermal boundary-layer thickness $\delta_{t}(x)$ and the local Nusselt number $\mathrm{Nu}_{x} \equiv h x / k$ by using a linear profile for the temperature distribution given in the form

$$
\begin{equation*}
\frac{T(x, y)-T_{w}}{T_{\infty}-T_{w}}=\frac{y}{\delta_{t}(x)} \tag{15Mark}
\end{equation*}
$$

