Name.....Student I.D.....

Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Final Exam for Semester: 2 Date: May 14, 2015 Subject: 237-320 Mechanical Behavior of Materials Academic Year: 2014 Time: 09.00-12.00 Room: Robot Head

Instruction

- 1. There are 4 problem sets. Please do all of them. Write your answers in the space provided. If you need more space, you can write on the back of paper.
- 2. Text books, course notes, and other studying materials are not allowed.
- 3. Dictionary, calculator, and stationery are allowed.
- 4. This final exam is counted for 25% of the total grade.

Asst. Prof. Thawatchai Plookphol, Ph.D.

Problem No.	Full Score (points)	Student's Score (points)
1.	30	
2.	30	
3.	30	
4.	30	
Total	120	

237-320 Final Exam

•

÷

Name.....Student I.D.....

1. Explain the following terms (please draw diagram or picture to support your answer).

1.1 Solid-solution strengthening. (5 points)

1.2 Precipitation strengthening. (5 points)

237-320 Final Exam	Page 3 of 9
lameStud	ent I.D
1.3 Work hardening strengthening (5 points)
1.5 work-nardening suchguidning. (5 points)
1.4 Power-law dislocation creep. (5 points)	

.

Name	Student I.D
1.5 Diffusional creep. (5 points)	
	· ·
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	
1.6 Low cycle fatigue. (5 points)	

•

Name.....Student I.D.....

2. A fatigue specimen made of ZA-27 zinc alloy with diameter of 12.5 mm is subjected to cyclic axial load that varies from a maximum of 20,000 N tension to a minimum of 10,000 N compression. Calculate the following fatigue stress parameters:

2.1 The maximum stress, σ_{max}	(5 points)
2.2 The minimum stress, σ_{\min}	(5 points)
2.3 The stress range, σ_r	(5 points)
2.4 The alternating stress, σ_a	(5 points)
2.5 The stress ratio, R	(5 points)
2.6 The amplitude ratio, A	(5 points)

Page 6 of 9

Name.....Student I.D.....

3. The linear relationship between crack growth rate $(\frac{da}{dN})$ and stress intensity range (ΔK) on the log-log scale can be expressed as

$$\frac{da}{dN} = C(\Delta K)^p$$

Estimate the value of constants C and p from the fatigue crack growth data of a zinc alloy die casting as shown in Fig. 3 below. Please use the upper-limit solid line for estimation. (30 points)

237-320 Final Exam	Page 7 of 9
NameStudent I.D	
·	

•

.

Name.....Student I.D.

4. An engineering member is made of 23Cr-43Ni alloy with 5/7%W. The Larson-Miller parameter plot of creep data of the alloy is given below (solid line).

4.1 If the member is designed to carry a load of 120 MPa, at a service temperature of 600 °C. Estimate the creep life of the member in hours. (15 points)

4.2 If the member is designed for a creep life of 100,000 hours, at the same service temperature of 600 °C, what is the allowable stress? (15 points)

20.36 Larson-Miller parameter plot of creep data for 23Cr-43Ni alloys with 3%/5%Mo or 5%/7%W.

237-320 Final Exam	Page 9 of 9
NameStud	ent I.D
	-