Name.....Student I.D....

Department of Mining and Materials Engineering Faculty of Engineering Prince of Songkla University

Mid-term Exam for Semester: 1 Academic Year: 2015

Date: October 3, 2015 Time: 13.30 – 16.30

Subject: 238-502 Adv. Mat. Proc. and Mat. Select. Room: Robot

Instructions

1. There are 4 problems (11 pages including cover page). Please do all of them. Write your answers in the space provided.

- 2. Textbook and course notes are not allowed.
- 3. Dictionary and calculator are allowed.
- 4. This mid-term exam is accounted for 25 % of total grade of this course.

Asst. Prof. Dr. Thawatchai Plookphol

Problem No.	Full Score (points)	Student's Score (points)
1.	20	
2.	40	
3.	20	
4.	20	
Total	100	

238-502 Adv. Mat. Proc. and Mat. Select.

Page 3 of 11

Name.....Student I.D....

Problem 2 (40 points)

Deriving Material Index for C-clamp

A C-clamp shown in Figure 2 is used for processing of electronic components.

Figure 2

The clamp has a square cross-section of width x and given depth b. It is essential that the clamp has low thermal inertia so that it reaches temperature quickly. The time t it takes a component of thickness x to reach thermal equilibrium when the temperature is suddenly changed (a transient heat flow problem) is

$$t \approx \frac{x^2}{2a}$$

where the thermal diffusivity $a = \lambda/\rho C_p$ and λ is the thermal conductivity, ρ the density, and C_p the specific heat. The time to reach thermal equilibrium is reduced by making the section x thinner, but it must not be so thin that it fails in service. Use this constraint to eliminate x in the equation above, thereby **deriving a material index for the clamp.** Use the fact that the clamping force F creates a moment on the body of the clamp of M = FL, and that the peak stress in the body is given by

$$\sigma = \frac{x}{2} \frac{M}{I}$$

where $I = bx^3/12$ is the second moment of area of the body. The table summarizes the requirements.

238-502 Adv. Mat. Proc. and Mat. Sel

Page	5	οf	11	
rage	J	o_1	1 1	

Name		Student I.D		
	Function	C-clamp of low thermal inertia		
	Constraints	Depth b specified		
		Must carry clamping load F without failure		
	Objective	Minimize time to reach thermal equilibrium		
	Free variables	Width of clamp body <i>x</i>		
		Choice of material		
	• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •				

Name.....Student I.D.....

Problem 3 (20 points)

One criterion for design of a safe pressure vessel is that it should leak before it breaks: The leak can be detected and the pressure released. This is achieved by designing the vessel to tolerate a crack of length equal to the thickness t of the pressure vessel wall, without failing by fast fracture. The safe pressure p is then

$$p \le \frac{4}{\pi} \frac{1}{R} \left(\frac{K_{1C}^2}{\sigma_f} \right)$$

where σ_f is the elastic limit, K_{1C} is the fracture toughness, and R is the vessel radius. The pressure is maximized by choosing the material with the greatest value of

$$M = \frac{K_{1C}^2}{\sigma_f}$$

Use the $K_{1C} - \sigma_f$ chart shown in Figure 3 to identify three alloys that have particularly high values of M. Please show your work how to get the answer.

Figure 3 Fracture toughness – Strength chart.

tudent I.D
t

Problem 4 (20 points)

- 4.1 Estimate the shape factor ϕ_B^e for a beam loaded in bending. The beam is a closed circular tube of outer radius 5t and wall thickness t shown in Figure 4. (10 points)
- 4.2 Explain the meaning of the value of shape factor obtained from 4.1 (10 points)

Figure 4

Hint:

$$\phi_B^e = \frac{S}{S_0} = \frac{EI}{EI_0} = \frac{12I}{A^2}$$

$\phi_B^e = \frac{S}{S_0} = \frac{EI}{EI_0} = \frac{12I}{A^2}$

Name.....Student I.D....

Section Shape	Area A m²	Moment / m ⁴	Moment <i>K</i> m ⁴	Moment <i>Z</i> m ³	Moment Z _p m ³
h	bh	<u>bh³</u> 12	$\frac{bh^3}{3}(1-0.58\frac{b}{h})$ (h>b)	<u>bh²</u>	<u>bh²</u> 4
	$\frac{\sqrt{3}}{4}a^2$	_a⁴ 32√3	√3a⁴ 80	8 ³ 32	3a ³ 64
27	πr²	$\frac{\pi}{4}r^4$	<u>π</u> r⁴	$\frac{\pi}{4}r^3$	$\frac{\pi}{3}r^3$
2s 2b	πab	$\frac{\pi}{4}a^3b$	$\frac{\pi a^3 b^3}{(a^2 + b^2)}$	$\frac{\pi}{4}a^2b$	<u>⊼</u> а²b
2r _o	π(r ₀ ² - r _i ²) ~2πrt	$\frac{\pi}{4} (r_o^4 - r_i^4)$ $\sim \pi r^3 t$	$\frac{\pi}{2} (r_0^4 - r_i^4)$ $-2\pi r^3 t$	$\frac{\pi}{4r_0}(r_0^4 - r_i^4)$ $\sim \pi r^2 t$	$\frac{\pi}{3}(r_o^3 - r_i^3)$ $-\pi r^2 t$
b h	2t(n+b) (h, b >> t)	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{2tb^2h^2}{(h+b)}\left(1-\frac{t}{h}\right)^4$	$\frac{1}{3}h^2t(1+3\frac{b}{h})$	$bht(1+\frac{h}{2b})$
28	π(a+b) t (a, b >> t)	$\frac{\pi}{4}a^3t(1+\frac{3b}{a})$	$\frac{4\pi (ab)^{5/2}t}{(a^2+b^2)}$	$\frac{\pi}{4}a^2t(1+\frac{3b}{a})$	ла $bt(2+\frac{a}{b})$
1 thought 1 though 1 thought 1 though 1 thought 1 thought 1 thought 1 though 1 thought 1 though 1 th	$b(h_o - h_i)$ $-2bt$ $(h, b >> t)$	$\frac{b}{12}(h_0^3 - h_i^3) - \frac{1}{2}bth_0^2$	-	$\frac{b}{6h_0}(h_0^3 - h_i^3)$ $- bth_0$	$\frac{b}{4}(h_o^2 - h_i^2)$ $\sim bth_o$
21	2t(h+b) (h, b >> t)	$\frac{1}{6}h^3t(1+3\frac{b}{h})$	$\frac{2}{3}bt^3(1+4\frac{h}{b})$	$\frac{1}{3}h^2t(1+3\frac{b}{h})$	bht(1 + $\frac{h}{2b}$)
24 h	2t (n + b) (h, b >> t)	$\frac{t}{6}(h^3+4bt^2)$	$\frac{t^3}{3}(8b+h)$	$\frac{t}{3h}(h^3 + 4bt^2)$	$\frac{th^2}{2} \left\{ 1 + \frac{2t(b-2t)}{h^2} \right\}$

Figure 5 Moment of Sections.