คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

การสอบปลายภาค ประจำภาคการศึกษาที่ 1
วันที่ 8 ธันวาคม 2558
วิชา 215-612 Finite Element Method

คำสั่ง

1. There are 4 problems
2. This is opened books \& Note Examination
3. All books are allowed

ประจำปีการศึกษา 2558
เวลา $13.30-16.30$ น.
ห้อง A 401

รศ.ดร.เจริญยุทธ เดชวายุกุล ผู้ออกข้อสอบ

1. For a rectangular element shown in the figure, displacements at the four nodes are given by $\left\{u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4}\right\}=\{0.0,0.0,1.0,0.0,2.0,1.0,0.0,2.0\}$. Calculate displacement (u, v) and strain $\varepsilon_{x x}$ at $(x, y)=(2,1)$.
Where;

2.

In order to solve 1-D steady-state heat transfer problem, one element with 3-nodes is used. The shape functions and the conductivity matrix before applying boundary conditions are given.

$$
\left\{\begin{array}{l}
N_{1}(x)=1-3 x+2 x^{2} \\
N_{2}(x)=4 x-4 x^{2} \\
N_{3}(x)=-x+2 x^{2}
\end{array} \quad,\left[K_{T}\right]=\left[\left.\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 2
\end{array} \right\rvert\,\right.\right.
$$

(a) When the temperature at node 1 is equal to $40^{\circ} \mathrm{C}$ and a heat flux of 80 W is input at node 3, calculate the temperature at $x=1 / 4 \mathrm{~m}$.
(b) When the temperature at mode 1 is equal to $40^{\circ} \mathrm{C}$ and the convection boundary condition is applied at node 3 with $h=4 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{C}^{\mathrm{C}}, T^{\infty}=100^{\circ} \mathrm{C}$, calculate the temperature at $x=1 / 2 \mathrm{~m}$
(c) Instead of the previous boundary conditions, heat fluxes at nodes 1 and 3 are given as Q_{1} and Q_{3}, respectively. Can this problem be solved for the nodal temperatures? Explain your answer.

3.

The quadrilateral element shown in the figure has the nodal displacements of $\left\{u_{1}, \nu_{1}\right.$, $\left.u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4}\right\}=\{-1,0,-1,0,0,1,0,1\}$.
(a) Find the (s, t) reference coordinates of point $A(0.5,0)$ using iso-parametric mapping method.
(b) Calculate the displacement at point B whose reference coordinate is $(s, t)=(0,-0.5)$
(c) Calculate the Jacobian matrix [J] at point B.

4.

Integrate the following function using one-point and two-point numerical integration (Gauss quadrature). Explain how to integrate it. The exact integral is equal to 2. Compare the accuracy of the numerical integration with the exact one.

$$
I=\int_{0}^{\pi} \sin (x) d x
$$

