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1. There are 4 problems 

2. This is opened books & Note Examination 

3. All books are allowed 
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1.  

2.  

For a rectangular element shown in the figure, displacements at the four nodes are 
given by fuhvi,u2,v2,u3,v3,u4,v4) = {0.0, 0.0, 1.0, 0.0, 2.0, 1.0, 0.0, 2.0). Calculate 
displacement (u, v) and strain EL, at (x, y) = (2, 1). 
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In order to solve 1-D steady-state heat transfer problem, one element with 3-nodes is 
used. The shape functions and the conductivity mairil before applying boundary 
conditions are given. 

Ni(z) = 1 — 3z + 2z2  1 —2 1 

N2(z) = 4z — 42 , [Kr] —2 4 —2 

N3(z) = --z + 2z2  1 —2 2 

(a) When the temperature it node 1 is equal to 40°C and a heat flux of 80 W is input 
at node 3, calculate the temperature at x = m_ 

(b) When the temperature at node 1 is equal to 40°C and the convection boundary 
condition is applied at nods 3 with h = 4 W1m21°C, r = 100°C, calculate the 
temperature at x = in. 

(c) Instead of the previous boundary conditions, heat fluxes at nodes 1 and 3 are 
given as Qi and Q3, respectively. Can this problem be solved for the nodal 
tamperatures? Explain your answer. 
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3. The quadrilateral element shown in the figure has the nodal displacements of { v1 , 
U2, v2, /43, v3, 144, v4) = {-1, 0, -1, 0, 0, 1, 0, 1). 

(a) Find the (s, t) reference coordinates of point A (0.5, 0) using iso-parametric 
mapping method. 

(b) Calculate the displacement at point B whose reference coordinate is (s,t)=(0,-0.5) 

(c) Calculate the Jacobian matrix [J) at point B. 

Physical Element Reference Element 

4. 
Integrate the following function using one-point and two-point numerical integration 
(Gauss quadrature). Explain how to integrate it. The exact integral is equal to 2. 
Compare the accuracy of the numerical integration with the exact one. 
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