Name	ID	1/10
1 varie	12	

Prince of Songkla University Faculty of Engineering

Midterm lest
28 February 2016
215-274 Numerical Methods for Mechanical Engineerin

Semester 2/2015
09:00-12:00
Room: Robot Head

Name	ID
1	

Direction:

- 1. All types of calculator and dictionary are permitted.
- There are totally 5 problems.
 One sheet of hand-written A4 paper is allowed. No photocopy!!

Perapong Tekasakul Kittinan Maliwan

Instructors

Problem	Full score	Your mark
1	10	
2	10	
3	10	
4	10	
5	10	
Total		

1. Determine the smallest positive real root of

$$f(t) = 9e^{-0.7t}\cos(4t) - 3.5$$

- (a) Using the Newton-Raphson method. Employ initial guess of 0.3 and a stopping criterion of 0.01%.
- (b) Using the secant method. Employ initial guesses of 0.2 and 0.4 and a stopping criterion of 0.01%.

(10 points)

Name	ID	3/2	10)
1 1001110				

2. Solve the following system of equation using Gauss Elimination

$$2x_1 - 6x_2 - x_3 = -38$$

$$-3x_1 - x_2 + 7x_3 = -34$$

$$-8x_1 + x_2 - 2x_3 = -20$$

Substitute your results into original equations to prove your answers. (10 points)

Name	ID	4	5/10)
	 _			

3. Consider the following set of data:

X	У
5	17
10	24
15	31
20	33
25	37
30	37
35	40
40	40
45	42
50	41

Use a second-order polynomial to fit the data. (10 points)

Name	ID	8/10)
	\mathbf{D}	0/1/	,

4. Given the data

\boldsymbol{x}	0	1	2.5	3	4.5	5	6
f(x)	2	5.4375	7.3516	7.5625	8.4453	9.1875	12

Calculate f(3.5) using Newton's interpolating polynomials of order 1 through 5. (10 points)

5 5.1 Given the data below, find the volume flow rate using the relationship

$$Q = \int_{0}^{R} 2\pi r v dr$$

where r is the radial axis of pipe, R is the radius of the pipe, and v is the velocity. (5 points)

Radius (cm)	0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
Velocity (m/s)	0.914	0.890	0.847	0.795	0.719	0.543	0.427	0.204	0

Use multiple Simpson's 1/3 rule to integrate.

Name	ID	10/	10

5.2 Estimate the acceleration at each time for the following data. Use finite-difference approximations that are second-order correct. (5 points)

<i>t</i> (s)	1	2	3	4	5	6	7	8	9	10_
v (m/s)										