\qquad ID

Prince of Songkla University
 Faculty of Engineering

Midterm Test
Semester 2/2015
09:00-12:00
28 February 2016
215-274 Numerical Methods for Mechanical Engineering

Room: Robot Head

Name \qquad ID \qquad

Direction:

1. All types of calculator and dictionary are permitted.
2. There are totally 5 problems.
3. One sheet of hand-written A4 paper is allowed. No photocopy!!

Perapong Tekasakul
Kittinan Maliwan
Instructors

Problem	Full score	Your mark
1	10	
2	10	
3	10	
4	10	
5	10	
Total		

\qquad ID

1. Determine the smallest positive real root of

$$
f(t)=9 e^{-0.7 t} \cos (4 t)-3.5
$$

(a) Using the Newton-Raphson method. Employ initial guess of 0.3 and a stopping criterion of 0.01%.
(b) Using the secant method. Employ initial guesses of 0.2 and 0.4 and a stopping criterion of 0.01%.

\qquad ID
2. Solve the following system of equation using Gauss Elimination

$$
\begin{aligned}
& 2 x_{1}-6 x_{2}-x_{3}=-38 \\
& -3 x_{1}-x_{2}+7 x_{3}=-34 \\
& -8 x_{1}+x_{2}-2 x_{3}=-20
\end{aligned}
$$

Substitute your results into original equations to prove your answers. (10 points)
\qquad ID
3. Consider the following set of data:

x	y
5	17
10	24
15	31
20	33
25	37
30	37
35	40
40	40
45	42
50	41

Use a second-order polynomial to fit the data. (10 points)

Name
ID
4. Given the data

x	0	1	2.5	3	4.5	5	6
$f(x)$	2	5.4375	7.3516	7.5625	8.4453	9.1875	12

Calculate $f(3.5)$ using Newton's interpolating polynomials of order 1 through 5. (10 points)

Name \qquad ID

5
5.1 Given the data below, find the volume flow rate using the relationship

$$
Q=\int_{0}^{R} 2 \pi r v d r
$$

where r is the radial axis of pipe, R is the radius of the pipe, and v is the velocity. (5 points)

Radius (cm)	0.0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
Velocity $(\mathrm{m} / \mathrm{s})$	0.914	0.890	0.847	0.795	0.719	0.543	0.427	0.204	0

Use multiple Simpson's $1 / 3$ rule to integrate.
\qquad
5.2 Estimate the acceleration at each time for the following data. Use finite-difference approximations that are second-order correct. (5 points)

$t(\mathrm{~s})$	1	2	3	4	5	6	7	8	9	10
$v(\mathrm{~m} / \mathrm{s})$	10	12	11	14	17	16	12	14	14	10

