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The production of hydrogen-enriched syngas from the thermo-chemical conversion of biomass was stud-
ied using Ni/CaA10„ catalysts prepared by co-precipitation method. The effect of Ca addition with different 
molar ratios of Ca:Al (1:3, 1:2, 1:1, 2:1, 3:1) on the properties and catalytic behavior in relation to syn-
gas production and the coke formation on the surface of the catalysts were investigated. Catalysts were 
characterized by BET, XRD, TPR, SEM, and TEM. The SEM and TEM results showed that rod-shaped nano-
particles were highly dispersed on the surface of the catalyst. The particle size of Ni0 was slightly affected 
with the increase of Ca content in the catalyst. It appeared that the selectivity of CO was increased and 
the selectivity of CO2 was reduced with the increase of Ca addition to the catalyst. For example, CO2  
concentration was reduced from 20 to 12 vol.%, when the molar ratio of Ca/Al was increased from 1:3 
to 3:1 for the Ni/CaA10„ catalyst; it is suggested that the water gas shift reaction was inhibited and CO2  
reforming reactions were promoted in the presence of the catalyst with higher Ca content. The CO/H2 
molar ratio could be manipulated by changing the Ca content in the catalyst, while the H2 concentration 
remained almost constant (around 45 vol.%). Thus, using the Ni/CaAlOx  catalyst developed in this work 
could provide a promising route to control the syngas composition, which is an important factor for 
syngas applications. 

Keywords: 
Biomass 
Pyrolysis 
Co-precipitation 
Calcium: Ni-catalyst 

  

© 2015 Elsevier B.V. All rights reserved. 

1. Introduction 

The consumption of fuels and chemicals continues to increase 
with the development of the world's economy [1,2]. As a versatile 
building block in the chemical industry and fuel synthesis, synthesis 
gas (syngas) plays an important role in industry [3-5]. Currently, 
syngas production largely depends on fossil sources through the 
reforming process [6]. For sustainable development, great atten-
tion has been focused on the production of syngas from renewable 
resource. Biomass, including agriculture and forest wastes is one 
of the most abundant renewable resources; it has been considered 
as a promising raw material to partially replace fossil resources in 
syngas production in the future [7-12]. 

* Corresponding authors. 
E-mail addresses: c.wo@hull.ac.tik (C. Wu), p.t.williams@leeds.ac.iik 

(PT. Williams), junimang@sydney.edu.au  (J. Huang). 

http://dx.doi.org/10.1016/i.apcatb.2015.10.028  
0926-3373/© 2015 Elsevier B.V. All rights reserved. 

Biomass gasification has been widely practiced for syngas pro-
duction due to its high thermal efficiency [12]. However, this 
process has challenges towards large-scale development, i.e., low 
hydrogen production and high tar content in the syngas [13,14]. 
Catalysts are well-known for their capability for accelerating 
biomass conversion through lowering activation energy, and for 
enhancing catalytic reforming to produce syngas [12,15,16]. For 
example, reduction of tar and significant increase in production 
of syngas have been achieved by adding olivine and alumina cat-
alysts to biomass gasification using a conical spouted bed reactor 
[15]. Cheah et al. [17] carried out biomass gasification using a nickel 
cerium olivine catalyst; they reported that the presence of cata-
lyst resulted in a significant improvement of H2-enriched syngas 
production. In addition, the improvement of hydrogen production 
was reported by adding Fe/CaO catalyst to a continuous-feed flu-
idized bed reactor [16J. Supported noble metal catalysts such as Rh, 
Ru and Pt have been reported to effectively increase syngas yield 
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Fig. 1. XRD patterns of Ni/CaAlOx  catalysts: (a) Ni/CaAl0 (1:3); (b) Ni/CaAlOx  (1:2); 
(c) Ni/CaA10„ (1:1); (d) Ni/CaA10„ (2:1); (e) Ni/CaA10„ (3:1). 

[18-21]. However, the high cost of these noble metals limits the 
wide applications of biomass gasification in industrial practice. 

At present, low-cost transition metal catalysts such as Ni-based 
catalysts have been widely used as effective alternatives to noble 
metal-based catalysts in biomass gasification or steam reforming 
processes [14,22]. Ni based catalysts are generally prepared by 
impregnation method by loading Ni or Ni0 particles on catalyst 
supports such as alumina and silica for gasification or reforming. 
The physical structure and chemical composition of catalyst sup-
ports influence the characteristics of Ni catalysts e.g., Ni dispersion 
and consequently their catalytic performance for gas production 
from biomass gasification. For a better Ni dispersion, various nano-
porous supports such as MCM-41 [23,24], zeolite 1251, and SBA-15 
[26,27] have been utilized to confine the size of Ni nano-particles 
inside the pores of the catalyst support. This type of confined 
reaction space with uniform Ni particles could enhance the pro-
duction of H2-enriched syngas. However, the nanopores of catalysts 
have diffusion limitations for large-molecular weight biomass com-
pounds and thus reduce the catalytic performance for syngas 
production [13]. 

Another efficient method to enhance Ni dispersion is to induce 
a strong metal-support interaction by incorporating rare-earth 
or alkaline metals in the catalyst system. It has been reported 
that introducing Zr, Ce, and Mg into a silica support markedly 
promoted Ni dispersion [28-31]. Based on these previous contri-
butions, it is desirable to prepare a highly dispersed Ni catalyst 
using non-porous supports without diffusion limitation. However, 
using rare-earth metals as promoters to Ni-based catalysts is costly. 
In this study, we introduced Ca, a low cost and highly abundant 
metal, into alumina supports for preparing uniform and fine Ni 
nano-particles with high dispersion for H2-enriched syngas pro-
duction from biomass through a pyrolysis-reforming process, using 
a two-stage reaction system. 

2. Experimental 

2.1. Biomass sample and catalyst synthesis 

Wood sawdust with a size less than 0.2 mm was used as raw 
biomass material in this work. The biomass sample contained 
6.4 wt.% moisture, 74.8 wt.% volatiles, 18.3 wt.% fixed carbon and 
1.2 wt.% of ash, as reported in our previous work [24]. In addition, 
the biomass contents of C, H, 0 and N were 47.1, 5.9, 46.9 and 
0.1 wt.%, respectively. 

The catalysts were prepared by a co-precipitation method with 
an initial Ni-loading mole ratio of 20 mol%. Ni (NO3 )3.6H2 0(>99%), 
Ca(NO3)3.4H20(>99%), Al2(NO3)3.9H20(>99%) were purchased 
from Sigma-Aldrich. Precursors with the desired Ni-Ca-Al ratios 
were prepared by dissolving a certain amount of metal salts in 
deionized water. After the precipitation, the suspension was aged 
under agitation for an hour and then filtered under vacuum. 
The filter cake obtained was rinsed with deionized water several 
times followed by drying at a temperature of 80 'C overnight. The 
solid products were calcined at 800 °C for 4 h with a heating rate 
of 1 min-1  in static air. The catalysts obtained were labeled as 
Ni/CaA10,(A:B), where A:B represented the mole ratio of Ca to Al. 

2.2. Catalyst characterization 

BET surface area of the fresh catalysts was analyzed by 
N2 adsorption and desorption isotherms on a Quanta chrome 
Autosorb-1. X-ray diffraction (XRD) analysis was carried out by 
using a SIEMENS D5000 in the range of 10-70° with a scanning 
step of 0.02° using Cu Ka radiation (0.1542 nm wavelength). A scan-
ning electron microscope (SEM) (LEO 1530) coupled to an energy 
dispersive X-ray spectroscope (EDXs) system was used to investi-
gate the surface morphology and the element distributions of the 
catalysts. Temperature programmed reduction (TPR) using H2 was 
employed to analyze the reduction behavior of the fresh catalysts 
by using a modified thermogravimetric analyzer (SDT Q600); dur-
ing the TPR experiment, fresh catalysts were loaded in an alumina 
pan and placed in the thermogravimetric analyzer furnace which 
was purged by a gas flow containing 15% H2 and 85% N2 with a flow 
rate of 100 ml min-1, and heated from room temperature to 900 °C 
at a heating rate of 10 °C min-1. 

Temperature-programmed oxidation (TPO) of the reacted cata-
lysts was carried out using a Stanton-Redcroft thermogravimetric 
analyzer (TGA and DTG) to determine the properties of the reacted 
catalysts. About 10 mg of the reacted catalyst was heated in an 
atmosphere of air at 15 °C min-1  to a final temperature of 800 °C, 
with a dwell time of 10 min. 

2.3. Experimental process 

Pyrolysis-reforming of biomass was carried out with a fixed bed, 
two-stage reaction system. The first stage involved pyrolysis of the 
biomass and the pyrolysis gases were passed directly to the sec-
ond stage where catalytic reforming took place as reported in our 
previous work [32]. During the experiment, N2 (80 ml min-1) was 
used as carrier gas. 0.5 g of biomass was placed inside a crucible 
and held in the first pyrolysis reactor. 0.25 g of sand or catalyst was 
placed in the second reactor. The temperature of the second reactor 
was initially heated to the set point (800 °C). Then the first reactor 
was heated to the pyrolysis temperature (500 °C) at a heating rate 
of 40 °C min-1  and kept at that temperature for 30 min. Water for 
steam reforming was injected into a location between the two reac-
tors with an injection rate of 0.05 g min-1  when the temperature 
of the pyrolysis reactor reached 150 °C. 

The products from pyrolysis/catalytic reforming were cooled 
using air and dry ice to collect the condensed liquid. Non-condensed 
gases were collected using a TedlarTm gas sample bag. Around 
20 min more time was allowed to collect the non-condensed gases 
to ensure complete reaction. The amounts of injected water and the 
condensed liquid were calculated by weighing the syringe and con-
densers before and after the experiment, respectively. Experiments 
were repeated to ensure the reliability of the results. 

Non-condensed gases collected in the TedlarTM gas sample bag 
were analysed off-line by gas chromatography (GC). H2, CO and N2 
were analyzed with a Varian 3380 GC on a 60-80 mesh molecular 
sieve column with argon carrier gas, whilst CO2  was analyzed by 
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Fig. 2. SEM imagines of the fresh Ni/CaA100  catalysts. (a) Ni/CaAlOx  (1:3); (b) Ni/CaA10„ (1:2); (c) Ni/CaAlOx  (1:1); (d) Ni/CaA10„ (2:1); (e) Ni/CaAlOx  (3:1). 

another Varian 3380 GC on a HayeSep 80-100 mesh column with 
argon carrier gas. C1-C4  hydrocarbons were analyzed using a Varian 
3380 gas chromatograph with a flame ionization detector, with an 
80-100 mesh HyeSep column with nitrogen carrier gas. 

3. Results and discussion 

3.1. Textural properties of Ni/CaAlOx  catalysts 

The BET surface areas of the Ni/CaAlOx  catalysts were between 
46 and 83 m2  g-1  and are reported in Table 1. It seems that the BET 
surface area did not change proportionally with the increase of Ca 
content in the catalyst support. 

XRD patterns of the Ni/CaAlOx  catalysts shown in Fig. I may be 
used to identify the crystal species present in the catalysts. It can be  

seen that the main phases on the catalysts were CaO, Ca(OH)2, NiO, 
and NiA12 04 Ni0 was present as separated metal particles and there 
were no detectable alloyed or inter-metallic Ca-Ni nanoparticles 
present. It should be noted that the catalysts were not pre-reduced 
prior to the experiments, and the Ni0 particles will be converted 
into active Ni particles by the produced H2 and CO during the pro-
cess of pyrolysis-reforming of biomass[33]. The diffraction peaks at 
2 theta values of 32.2°, 53.9°, 64.2° and 67.5° were identified as CaO, 
and the diffraction peaks at 2 theta positions of 18.1°, 28.7°, 34.2°, 
47.2° and 50.9° were identified as Ca(OH)2. Ca(OH)2 present on the 
catalysts may be derived from the hydrolysis of Ca0 by ambient 
moisture in the environment [34]. It was noted that CaCO3  was not 
observed from XRD analysis of all the fresh catalysts. It has been 
reported that carbonation of Ca0 is slower compared with rapid 
hydration and the generated Ca(OH)2 layer may act as a protective 
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(a) (b) 

Fig. 3. TEM images of the fressh Ni/CaA10„ catalysts. (a) Ni/CaA10, (3:1); (b) Ni/CaA10„ (1:1). 

layer to prevent carbonation of Ca0 [34]. The diffraction peaks at 2 
theta values of 37.3', 43.3', and 62.9' are assigned to NiO. The broad 
characteristics of the Ni0 peaks demonstrated a low crystallinity 
and high distribution of metal phases. In addition, the diffraction 
peaks at 2 theta values of 37.0°, 45.0°, 59.6° and 65.5° were assigned 
to NiA1204. 

With the increase of Ca content changing from the Ni/CaAlOx  
(1:3) to Ni/CaAlOx  (3:1), the peak intensity of Ca0 and Ca(OH)2 
increased. In contrast, the peak intensity and position of Ni0 barely 
changed when the Ca/Al ratio was increased from 1:3 to 3:1, 
indicating that there were only slight differences of size and dis-
tribution of Ni0 for the catalysts with different Ca contents. This 
corresponds with the calculated sizes of Ni0 particles (around 
10 nm) from XRD analysis (Table 1). However, it was reported that 
the size of NiO can range widely over many nanometers depend-
ing on the composition of the catalysts [35,36]. Wu et at. [37] 
have reported that when using Ni/La203 prepared by impregna-
tion methods for glycerol steam reforming, the partial substitution 
of La by Ca caused gradual increase of Ni particle size and signifi-
cantly affected catalyst metal dispersion. Elias et at. [38] reported 
that Ni-Ca/A1203  catalyst prepared by impregnation method has 
an increased size of Ni with the increasing of Ca content. It is 
demonstrated that the addition of Ca in the Ni/CaAlOx  prepared 
by co-precipitation method in this work may favor size uniformity 
and dispersion of Ni, which are beneficial for catalytic reactions for 
syngas production from thermo-chemical conversion of biomass, 
as more active catalytic sites are available. High metal dispersion 
in the Ca-added catalysts prepared by co-precipitation makes Ca 
a promising candidate as a catalyst promoter. In addition, main-
taining the size of active sites in the Ni/CaAlOx  catalyst enables a 
controlled investigation into the influence of different amounts of 

Table 1 
Composition, particle size and surface areas of the Ni/CaA100  catalysts. 

Ca addition to the catalyst in relation to syngas production with 
little interference from the particle size of the active metal sites. 

Fig. 2 shows SEM images of the fresh Ni/CaAlOx  catalysts. The 
surfaces of the catalysts were covered with fine spherical parti-
cles. The size of the spheres was around 100 nm. Limmanee et al. 
[34] have reported that substitution of Mg2+ and Zn2+ with Ca2+ 
resulted in highly dispersed metal oxide crystallites at a calcination 
temperature of 800 °C. The spheres are assumed to be a mixture of 
NiO, Ca(OH)2, Ca0 and Ni-spinels. Furthermore, holes with differ-
ent sizes were found on the surface of the catalysts, which could 
be attributed to the release of CO2  during catalyst calcination [39]. 
In order to observe the catalyst structure, TEM images of selected 
catalysts with the ratio of Ca/AI of 1:1 and 3:1 are shown in Fig. 3. 
For the Ni/CaAlOx  (3:1) catalyst, it can be clearly seen that the sur-
face was dominantly covered by rod-shaped Ca(OH)2 with a size of 
around 15 nm, and Ni0 with a size of 10 nm which were sparsely 
embedded. This is in accordance with the crystal size calculated by 
XRD analysis (Fig. 1), which shows a particle size of about 18.1 nm 
for Ca(OH)2  and 9.3 nm for NiO, respectively. For the Ni/CaAlOx  (1:1) 
catalyst, Ca(OH)2  exhibited a spherical shape with a size of around 
15 nm. Ni0 particles on the surface of the Ni/CaAlOx  (1:1) catalyst 
have a similar size with that on the surface of the Ni/CaAlOx  (3:1) 
catalyst, i.e., around 10 nm. The sizes of particles on the surface of 
the Ni/CaA105  (1:1) catalyst observed by TEM are also consistent 
with the XRD analysis, i.e., 15.3 nm for Ca(OH)2  and 9.0 nm for NiO, 
respectively. It is further suggested that the increasing content of 
Ca in the catalysts increased the size of Ca(011)2, however it has 
little influence on the size of the active nickel-based phase in the 
Ni/CaAlOx  catalysts. 

The reducibility of Ni/CaA10, catalysts with various Ca/A1 molar 
ratios was investigated by H2 -TPR, and the reduction profiles are 
shown in Fig. 4. All the fresh catalysts are characterized by three 

Catalyst 	Molar ratio (Ca/AI) 	 Metal molar composition (wt.%)° Particle size (nm)b 	 BET surface area (m2g- I  ) 

Ca(OH)1  Ni0 Ca0 A120, 

1:3 26.4 19.7 53.9 
1:2 26.3 26.1 47.6 
1:1 25.9 38.8 35.3 
2:1 25.6 51.1 23.2 
3:1 25.5 57.1 17.3 

CaO 
	

NiA1,04 	NiO 

15.6 19.5 9.7 64.6 
17.1 11.9 11.3 83.0 
16.2 13.2 9.0 46.8 
13.3 10.8 61.0 
19.4 9.3 46.3 

Ni/CaA10„, 14.0 
15.0 
15.3 
16.6 
18.1 

a Molar ratio was obtained from calculation of catalyst preparation. 
b  Particle size was calculated from XRD analysis using the Scherrer equation. 
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Fig. 4. TPR results of the Ni/CaA10„ catalysts: (a) Ni/CaA10„ (1:3); (b) Ni/CaA10„ 
(1:2); (c) Ni/CaAlOx  (1:1); (d) Ni/CaAlOx  (2:1); (e) Ni/CaA10„ (3:1). 

Fig. 5. Gas compositions and fractions from biomass gasification on the sand and 
Ni/CaA10„ catalysts. (a) sand; (b) Ni/CaA10„ (1:3); (c) Ni/CaA10„ (1:2); (d) Ni/CaAlOx  
(1:1); (e) Ni/CaA10, (2:1); (f) Ni/CaA10, (3:1). 
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main reduction peaks: the first peak is centered at around 400 °C 
which might be assigned to the reduction of bulk Ni0 oxides [40]. 
The second reduction peak between 450 and 600 'C might be 
attributed to complex Ni0 species which have stronger interaction 
with the Ca0 modified A12 03 support [41]. The third reduction peak 
around 800 °C could result from the reduction of NiA1204 spinel 
phases [42-44]. For the Ni/CaAlOx  (1:3) catalyst with 19.7% Ca0 
content, the intensities of the three peaks were similar, indicat-
ing that the three fractions of Ni0 species were evenly distributed. 
However, with the stepwise increase of Ca0 content to around 50%, 
the relative intensity of reduction peaks for bulk Ni0 showed an 
obvious increase. It indicates that the increase of Ca content in the 
Ni/CaAlOx  catalysts contributes to the increase of the fraction of 
bulk Ni0 species. Wu et al. [40] reported that the presence of an 
excess amount of Ca (Ca/Ni > 0.2) in a Ni-Ca/A12 03 catalyst pre-
pared by impregnation method covered the surface of the A1203  
support and hindered the interaction between Ni and support [41]. 
In this work, the increase of Ca content might occupy more surface 
area of the alumina support and reduce the interactions between Ni 
and the catalyst support; thus resulting in an increase in the frac-
tion of bulk Ni-species with the increase of Ca content. In addition, 
the reducibility of a Ni-Al catalyst was reported to be increased by 
adding La metal [45]. 

3.2. Pyrolysis/steam reforming of sawdust over Ni/CaAlOx  
catalysts 

Catalytic steam reforming of pyrolysis product gases derived 
from biomass sawdust pyrolysis was carried out at 800 °C to evalu-
ate the performance of the developed catalysts with different Ca/Al 
molar ratios. The mass balance calculated for each experiment is 
shown in Table 2. Char residue was obtained in the pyrolysis stage. 
The yield of char residue in terms of the amount of biomass sam- 

Table 2 
Mass balance for pyrolysis catalytic steam reforming of biomass using Ni/CaA10„ 
catalyst. 

Catalyst Bed Sand Catalyst with different Ca/AI ratios 

1:3 1:2 1:1 2:1 3:1 
Gas/biomass (wt.%) 32.99 55.42 65.2 55.87 63.45 57.57 
Residue char/biomass (wt.%) 38.75 36.25 37.5 37.5 37.5 37.5 
Mass balance (wt.%) 103.25 104.29 97.03 95.69 98.67 95.95 
Hz Yield (mmol H2 g-1  biomass) 2.36 12.97 15.57 15.3 15.37 14.32 
1-12/C0 molar ratio 0.38 1.51 1.08 1.63 1.25 1.01 

ple is around 38 wt.% for all the experiments, as the pyrolysis stage 
was not affected by the type of catalyst downstream. Compared 
with pyrolysis-reforming of biomass without catalyst ( using sand), 
it was found that with the addition of catalyst, the yields of total 
gas and hydrogen greatly increased, from around 30 to 50 wt.% and 
from 2 to >10 mmol g-1  biomass, respectively. It is difficult to deter-
mine a clear influence of Ca content on total gas yield from Table 2. 
Quincoces et al. [46] has also reported that there were no important 
influences of Ca addition on methane reforming; It was suggested 
that small modifications of crystal size were obtained for Ni-Al 
catalyst containing different amounts of Ca, which is consistent 
with our results in relation to the changes of crystal size as pre-
sented in Table 1. However, the highest gas yield (65.2 wt.%) was 
obtained using the Ni/CaA105  (1:2) catalyst, which might be related 
to the catalyst with the highest BET surface area (Table 1), which 
promoted more contact between reactants and catalytic sites. In 
addition, the Ni/CaA10, (1:1) catalyst showed a lower gas yield 
(55.87 wt.%) compared with the Ni/CaA10„, (1:2) and the Ni/CaAlOx  
(2:1) catalysts, which might also be due to the Ni/CaAlOx  (1:1) 
catalyst which had a lower BET surface area (Table 1). 

From Table 2, it seems that hydrogen production was increased 
slightly from 12.97 to 15.57 mmol g-1  biomass, when the catalyst 
was changed from the Ni/CaAlOx  (1:3) to the Ni/CaA10, (1:2); with 
the further increase of Ca content, the hydrogen production was 
reduced slightly to 14.32 mmol g-1  biomass using the Ni/CaAlOx  
(3:1) catalyst. 

The performance of the catalyst during biomass pyrolysis-
reforming was also compared using the product gas concentrations 
(N2 carrier gas free), as shown in Fig. 5. In the absence of catalyst, CO 
concentration was about 45 vol.% and H2 concentration was about 
18 vol.%. In the presence of Ni/CaA10, catalyst, the concentration of 
H2 increased markedly to about 45 vol.%, and the concentration of 
CO reduced to about 30 vol.% (except for the Ni/CaAlOx  (3:1) cat-
alyst). It is suggested that the water gas shift reaction (Reaction 
(1)) was significantly enhanced by the introduction of the catalysts 
for the reforming of primary products from pyrolysis-reforming of 
wood sawdust [24,47]. In addition, the concentrations of hydro-
carbon gases (CH4 and C2-C4) were largely reduced as shown in 
Fig. 5 in the presence of catalyst, indicating steam reforming of 
hydrocarbons (Reaction (2)) was effectively promoted by adding 
the Ni-based catalyst prepared in this work. 

CO -i- H2O 4.-+ CO2 [12 

Cx Ely  + 2xH20 	xCO2  + (2x + y/2 )1-12 
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CO2  + CH4  H 2C0 + 2H2 

Hydrogen concentration was slightly changed when the 
catalysts with different Ca/Al molar ratios were used for thermo-
chemical conversion of biomass. From Fig. 5, CO concentration 
increased from about 30 to 45 vol.%, and CO2 concentration reduced 
from 20 to 12 vol.%, when the molar ratio of Ca/Al was increased 
from 1:3 to 3:1 for the Ni/CaAlOx  catalyst; this might be ascribed to 
the inhibition of the water gas shift reaction (WGSR) (Reaction (1)). 
In addition, the reduction of CO2  concentration with the increase 
of Ca content might be due to the promotion of CO2 reforming 
reactions (e.g., Reaction (3)). It is known that the acidic sites of 
nickel-based alumina catalysts resulted in coke deposition during 
reforming reactions [48]. The addition of Ca into a Ni-Al catalyst 
has been reported to significantly increase the basicity of the cata-
lyst 149].  In this work, it is suggested that the increase of basic sites 
promoted the methane dry reforming reaction (Reaction (3)) with 
the increase of Ca content in the Ni/CaAlOx  catalyst; this is consis-
tent with the other report, where CO2 conversion was enhanced 
during methane dry reforming by increasing the Ca content in a 
Ni-Ca-based catalyst [41]. 

Here, it is suggested that the addition of Ca promoted the metal 
dispersion and affected the equilibrium through adsorption on the 
enhanced basicity sites. Ni0 and NiA12 04 (as identified in the XRD 
analysis of the fresh catalysts, Fig. 1) have been reported to provide 
active Ni sites for methane dry reforming[50]. From the TPR analy-
sis of the fresh catalysts, it seems that the fraction of Ni0 species was 
increased with the increase of Ca addition. Therefore, it is proposed 
that in this work, Ni0 species play key roles to provide active sites 
for methane dry reforming (Reaction (3)) and possibly other hydro-
gen carbon reforming reactions for CO production. Ni has also been 
reported as active sites for the WGSR [51]; however, the increase of 
Ni0 fraction in the catalyst with the increase of Ca addition did not 
enhance the WGSR. Here we suggested that the water gas shift reac-
tion has been significantly affected by the basicity of the catalyst 
introduced by the addition of Ca. 

From Fig. 5, it is demonstrated that the concentration of syngas 
(H2  and CO) was about 80 vol.% using the Ni/CaAlOx  (1:3) catalyst, 
and increased to about 90 vol.% when the Ca/Al molar ratio was 
increased to 3:1 (the Ni/CaA10,(3:1) catalyst), while the concen-
tration of H2 was almost constant. In addition, with the addition of 
the catalyst, the H2 /CO molar ratio increased significantly to about 
1.63 from 0.38. A range of H2 /CO molar ratio between 1.01 and 
1.63 was obtained using different Ni/CaAlOx  catalysts (Table 2). It 
is therefore suggested that using the Ni/CaAlOx  catalyst prepared in 
this work the H2/CO molar ratio in syngas can be manipulated, by 
controlling the content of Ca in the catalyst system; since it appears 
that the selectivity to CO or CO2  was related to the Ca content in 
the Ni/CaAlOx  catalyst. 

3.3. Coke formation analysis using temperature programmed 
oxidation 

Coke deposition is one of the most problematic factors causing 
catalyst deactivation during catalytic thermo-chemical conversion 
of biomass [52,53]. The characteristics of coke formation on the 
reacted Ni/CaAlOx  catalysts were investigated using temperature 
programmed oxidation (TPO). Fig. 6 shows TGA results of TPO anal-
ysis for the reacted catalysts. It can be seen that two types of 
carbon were formed on the surface of the majority of the reacted 
catalysts corresponding to a two-stage weight loss. For all the cat-
alysts except the Ni/CaAlOx  (1:3), the weight loss which occurred 
at around 410 'C might be assigned to the oxidation of amorphous 
carbons. The weight loss at higher oxidation temperature (around 
600'C) might be assigned to filamentous carbon [54]. However 
the reacted Ni/CaA105  (1:3) catalyst showed a three-stage weight 

200 
	

400 	 600 
	

800 

Temperature ( °C) 

Fig. 6. TPO analyses of reacted Ni/CaA10„ catalysts: (a) Ni/CaAlOx  (1:3); (b) 
Ni/CaA10„ (1:2); (c) Ni/CaA10, (1:1); (d) Ni/CaA10„ (2:1 ); (e) Ni/CaA10„ (3:1). 

loss in the TPO analysis, which occurred at around 270, 560 and 
710 cC, respectively. The weight loss around 400 cC was normally 
deemed as heavy hydrocarbon depositions, and the one at 560 'C 
may be attributed to the oxidation of amorphous carbons 147,55]; 
the weight loss at around 710 °C for the reacted Ni/CaA10, (1:3) 
catalyst can be assigned to filamentous carbons for the reacted 
Ni/CaAlOx  (1:3) catalyst [53,56]. It is noted that weight increase was 
observed at around 550 °C from Fig. 6 in particular for the catalysts 
with high Ca content, demonstrating that oxidation of Ni might 
have occurred during the TPO analysis. It is known that Ni could be 
produced from the reduction of Ni0 during the pyrolysis-reforming 
reactions. 

It was reported that high dispersion of nickel metal particles and 
the basicity of the support surface benefited the resistance to coke 
deposition, since water splitting into hydroxyl (OH—) groups could 
be enhanced during reforming reactions due to the high nickel 
dispersion and support basicity, which thus promoted carbon elim-
ination reaction with hydroxyl groups [14]. The use of Ni/A12 03 
catalysts in the thermo-chemical conversion process is known to 
have problems of coke deposition on the surface of the catalyst 
due to the presence of acid sites [48]. In this work, Ca was added 
to the catalyst system to improve the catalyst basicity in order to 
reduce coke formation during pyrolysis-reforming of biomass. It is 
reported that the increase of basicity of a catalyst by adding Ca could 
promote steam-coke reactions, which resulted in a decrease of coke 
deposition on the surface of the catalyst during the steam reforming 
of biomass [49]. The reacted Ni/CaAlOx  (1:3) catalyst showed the 
highest coke formation (about 20 wt.%); this might be because the 
Ni/CaA10, (1:3) catalyst has the lowest alkaline metal (Ca) addition 
which corresponded to the lowest catalyst basicity compared with 
the other Ni/CaAlOx  catalysts. The amount of coke deposition on 
the surface of the reacted catalyst was estimated from the weight 
loss of reacted catalysts from the TPO analysis, with the assumption 
that the weight increase from Ni oxidation was insignificant. 

For the other reacted Ni/CaAlOx  catalysts, coke formation was 
less than 10 wt.% of the weight of the reacted catalyst. It seems 
that the coke deposition on the surface of the reacted catalyst was 
reduced when the Ca/AI molar ratio was increased from 1:3 to 3:1. 
However, as shown in Fig. 6, amorphous carbon was largely formed 
on the reacted Ni/CaAl0, (3:1) catalyst (weight loss around 400 C), 
indicating that there might be an optimal content of Ca addition 
to the catalyst in order to minimize coke formation. Amorphous 
carbons are known to easily deactivate catalyst by encapsulating 
catalytic active sites. 

(3) 
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4. Conclusions 

As an alkaline metal, Ca is attractive to promote catalytic activ-
ity in thermo-chemical conversion of biomass due to its low 
cost and high abundance in nature. In this study, a series of 
Ni/CaAlOx  catalysts promoted by different contents of Ca were 
prepared by co-precipitation method, and were investigated for 
H2-enriched syngas production from the pyrolysis-reforming of 
sawdust biomass. The following conclusions were proposed: 

(1) High dispersion of Ni0 particles was obtained within the 
Ni/CaAlOx  catalysts. With the increase of Ca/Al molar ratio 
from 1:3 to 3:1, the particle size of Ni0 remained constant at 
around 10 nm, while the reducibility of the Ni/CaA10, catalysts 
increased according to TPR analysis. 

(2) The catalytic performance in terms of total gas yield and hydro-
gen production was not closely related to the content of Ca in 
the catalyst. The total gas yield might depend on the surface 
area of the catalyst. The Ni/CaAlOx  (1:3) catalyst showed the 
lowest gas production: this might be due to the severe catalyst 
deactivation which resulted from coke deposition which was 
supported from TPO analysis. 

(3) It was clearly demonstrated that the increase of Ca content 
resulted in the increase of CO selectivity and the decrease of 
CO2  selectivity. 

(4) A total concentration of 90 vol.% syngas (H2  + CO) could be 
obtained using the Ni/CaA10, (3:1) catalyst. In addition, the 
H2/CO ratio could be controlled between 1.01 and 1.63 by vary-
ing Ca content while H2 concentration in the syngas remained 
almost constant. This is particularly important in relation to the 
manipulation of syngas composition for downstream applica-
tions 
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