| Name | Code |
|------|------|
|      |      |

## PRINCE OF SONGKLA UNIVERSITY FACULTY OF ENGINEERING

Midterm Examination: Semester I

Academic year: 2016

Date: 13 October, 2016

Time: 09.00 - 12.00 AM

Subject: 231-201 Material and Energy Balances

Room: \$102

## รายละเอียดการทำข้อสอบ

1. ห้ามนำข้อสอบบางส่วนหรือทั้งหมดออกจากห้องสอบ

2. น้ำหนังสือหรือเอกสารเข้าห้องสอบได้

3. ข้อสอบมีทั้งหมด 6 ข้อ มีจำนวนทั้งหมด 7 หน้า

4. อนุญาตให้ทำข้อสอบด้านหลังกระดาษคำตอบแต่ละข้อได้

5. กราอกชื่อและ Code นักศึกษาด้านหน้าข้อสอบและกรอก Code นักศึกษาทุกหน้าของกระดาษ

| ข้อที่ | คะแนนเต็ม | คะแนนที่ได้ |
|--------|-----------|-------------|
| 1      | 10        |             |
| 2      | 20        |             |
| 3      | 20        |             |
| 4      | 25        |             |
| 5      | 25        |             |
| 6      | 20        |             |
| ้ มวท  | 120       |             |

อ.จันทิมา ชั่งสิริพร ผู้ออกข้อสอบ

ทุจริตในการสอบ โทษขั้นต่ำปรับตกในรายวิชานั้น และพักการเรียน 1 ภาคการศึกษา

| Code | ********************* |
|------|-----------------------|
|      |                       |

1. (10 marks) 2 streams of HCl solution consisting of 120 kg/h (30.0 wt. % HCl) and  $Q_1$  kg/h (12.0 wt. % HCl) are fed into a mixing tank. It is desired to produce the final product of 18.0% HCl solution.

- Determine

  1. Draw the diagram of this process.

  2. Calculate the flow rate of all streams.

  3. Flow rate of HCl in the final product solution.

| Codo |      |      |
|------|------|------|
| Coue | <br> | <br> |

2. (20 marks) Scale the product of gas mixer unit as shown in flowchart below to 5,500 kmole/h and draw the new flowcharts of the scaled processes. How much of  $O_2$  (kmole/h) containing in the product stream is produced from the scaled process?



| Code | *******                |
|------|------------------------|
| Couc | ********************** |

3. (20 marks) 2 input streams of 150 kg dry air/h and  $N_2$  gas stream (flow rate of 1.5 time of the dry air) are fed into an evaporator. To produce humid gas stream containing 2.5 wt. % water, liquid water is introduced to the evaporator unit.

**<u>Determine</u>** 1. Draw and label a flowchart of the process.

- 2. Calculate flow rate of liquid water that requires for humid air.
- 3. Composition of the humid air product stream.

| Code   |                   |           | • • • • • • • • • • • • • • • • • • • • |
|--------|-------------------|-----------|-----------------------------------------|
| Coucin | · • • • • • • • • | ********* | ,                                       |

- 4. (25 marks) Methane and air are continuously introduced to combustion chamber at the flow rate of 140 mole/h and 2000 mole/h, respectively. f = 0.57 (fractional conversion) of the limiting reactant reacts in combustion reaction. Flue gas is released out from the unit.
  - 1) Draw the diagram of this process.  $(CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O)$
  - 2) What is the theoretical air flow rate required if complete combustion occurs?
  - 3) What is % excess air supplied to the system?
  - 4) Molar flow rate of the flue gas using extended of reaction.
  - 5) Composition of the flue gas on dry basis.

| Code | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |

- 5. (25 marks) Methanol, oxygen, and nitrogen at flow rate of 200 kmole/h, 125 kmole/h, and 50 kmole/h, respectively, are fed to catalytic reactor to form formaldehyde. The reactor is to be designed for a conversion at 65% of limiting reactant. 75% of remaining methanol in reactor product is removed and sent out by seperator unit.  $(2CH_3OH + O_2 \rightarrow 2CH_2O + 2H_2O)$ 
  - 1) Draw the diagram of this process
  - 2) What reactant is limiting?
  - 3) The percentage of the other reactants is in excess?
  - 4) Calculate the flow rate of reactor product stream using extend of reaction.
  - 5) Calculate the flow rate of final product from this process and CH<sub>3</sub>OHin the final product stream.

| Code | *************************      |
|------|--------------------------------|
| Out  | ****************************** |

- 6. (20 marks) 800 mole  $N_2/min$  (T = 55°C and  $P_{gauge}$ = 0.5 atm) is continuously fed into an evaporator. Liquid hexane ( $C_6H_{14}$ ) is also introduced to evaporate and mix with the  $N_2$  in the evaporator unit. Gas leaving the chamber is compressed by compressor to produce the final product at  $P_{gauge}$ = 5.5 atm and 277°C. The percentage of hexane in this final product is 30% by mole.
  - 1) Draw the flowchart of this process.
  - 2) What is the flow rate of hexane feeding?
  - 3) What is the partial pressure of hexane in the stream leaving the compressor?
  - 4) What is the volumetric flow rate of the N<sub>2</sub> entering the evaporator?