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1. Consider the base plate of a 1200-W household iron with a thickness of L=0.5 cm, base area
h=80 W/m-°C

of A=300 cmz, and thermal conductivity of k=15 W/m-°C. The inner surface of the base plate is
' T,=20°C

)

subjected to uniform heat flux generated by the resistance heaters inside. When steady
operating conditions are reached, the outer surface loses heat to the surroundings at T,,=20"C
by convention. Taking the convection heat transfer coefficient to be h=80 W/m**C and

disregarding heat loss by radiation, obtain an expression for the variation of temperature in the

base plate, and evaluate the temperatures at the inner and the outer surfaces. {20 Marks)
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2. A d-m-high and 6-m-wide wall consists of a long 18-cm x 30-cm cross section of

horizontal bricks {(k=0.72 W/m-*°C) separated by 3-cm-thick plaster layers (k=0.22

W/m-=C). There are also 2-cr-thick plaster layers on each side of the wall, and a 2-cm- =] s 5 em
thick rigid foarn (k=0.026 W/m-°C}) on the inner side of the wall. The indoor and the -
outdoor temperatures are 22°C and -4°C, and the convection heat transfer coefficients 30 an
on the inner and the outer sides are h,=10 W/m’eC and.h,=20 W/m2-°C, respectively.

1.5em

Assuming one-dimensional heat transfer and disregarding radiation, determine the rate ——

of heat transfer through the wall. (20 Marks)
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3. Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose
walls are maintained at a temperature of 180°C. Circular aluminum alloy 2024-T6 fins
(k=186 W/m-"C) of outer diameter 6 ¢cm and constant thickness 1 mm are attached to the
tube. The space between the fins is 3 mm, and thus there are 250 fins per meter length of
the tube. Heat is transferred to the surrounding air at T=25°C, with a heat transfer
coefficient of 40 W/m’°C. Determine the increase in heat transfer from the tube per meter

of its tength as a result of adding fins. (20 Marks)

180°C
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4. The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1-
mm-diameter sphere. The properties of the junction are k=35 W/m-*C, density of 8500 kg/ms,' and C,=320 J/kg°C, and the
convection heat transfer coefficient between the junction and the gas is h=210 W/m>2C. Determine how long it will take

for the thermocouple to read 99 percent of the initial temperature difference.
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[ Ve Resistance heater, 800 W

5. Consider the base plate of a 800-W household iron having a thickness of
L=0.6 cm, base area of A=160 cmZ, and thermal conductivity.of k L 20 W/m -
°C. The inner surface of the base plate is subjected to uniform heat flux

generated by the resistance heaters inside. When steady operating conditions

are reached, the outer surface temperature of the plate is measured to be

85°C. Disregarding any heat loss through the upper part of the iron and taking

the nodal spacing to be 0.2 am, (a) obtain the finite difference formulation for

the nodes and (b) determine the inner surface temperature of the plate by

solving those equations. (20 Marks)



L5 this chapter we have studied the heat conduction equation
and its selitions. Hewt conduction in a medium is said to be
steady whi the temaperatire does not vary with time and va-
steady ar transient when it does. Heat conduction in a medium
is said to be one-dimensional when conduction is significant
in one dimension only and negligible in the other two di-
wensions, 1t s said to be fwe-dimensional when conduction in
the tsied disnension is negtigible awd Hree-dimensional when
condaction in atl dimensions is significant. In heat ransfer
analysis, the conversion of electrical, chemicai, or nuciear
pnergy inte heat (or theral} energy is chracterized as feat
seneration,

The heat conduction eguation can be derived by performing
an energy batance on a differertial volume elerment, The one-
dimensional heat condnction equation in rectangnlas, evlindri-
cal, and spherical coordinate systerus for the case of constant
‘thermal conductivities are expressed as

{}21 ~ial
éuz g— « dit
ary & _1af
a;»} FrTEH
dar} ok T fff

where the prosenty & = &pC s the therawl diffusivity of the
maiecial.

The solution of a heat conduction problem depends on the
conditiony at the swfaces, and the mathematical expressions

for the thermal conditions at the boundaries are called the

S

baundary conditions. The sohstion of transient heat conduction
problems also depends an e condition of the imedian at the
Beginning of the heat conduction process. Such a comdition,
which is usuadly specified ot time ¢ = 0, Is called the Jnigal
cordiion, whicl is & matheratical expression for the temper-
ature distyibution of the medium initially. Complete mathemat-
ical descriplion of a heal conduction problem requires the
specification of two honndary conditions for sach dimension
aloarg which heat conduction is significant, and an initial con-
dition when the problem is transient. The most commion
boundary conditions are the specified temperature, specified
fwat flux, comvection, and radiaiion boundary conditions. A
boundary surface, in gesersd, may lovolve speeiffed heat fhix,
nenvection, and radiation at the same time.

For steady one-dimensianal heat transfer through a plate of
thickuess £, the various types of botndary conditions @t the
sirfaces at v = 0 and x = L can be expressed as

Specified remperatine

) = 1, and Wy =1,
where 7} and 7T are the specified temperatares at surfaces at
x=and x = L.

Specified hoat fhux:

PR (Y

where g and ¢ are the specified heat fluxes at surfaces at
ye g yes [

Insulation or thermal symmetry:

dT dTL)
== aml = {3
dx dx
Convection:
1710 d’
DO 7y - 1) ana DD A - 7y

where iy and A, are the convection heat transfer coelficients
and Ty and Ty are the temperatures of the swrrounding medi-
ums on the two sides of the plate.

Radiation:
He
B df}f\o) = 3]‘:[7'"1:‘(.1 - j{{))é] and
J{F
_‘kﬂA e { T — Ti,. 4

where £, and &; are the emissivities of the boundary surfaces,
o = 567 X 3107 Wim? - Klis the Stefan-Bolrzimann constant,
and T, and £, ; are the average temperatures of the su-
faces surrounding the two sides of the plaie. In radiation calou-
lations, the temperatures st be i K or R,

Interface of i bodies A and B in perfect contact at x = X!

ity (x) alz (%)

and - = — [y
4y L™

o () = T ()

where & and &y, ave the thermal conductivities of the layers
A ared B,

Heat generation is usually expressed per waft volome of (he
medium asd is denoted by g whose unil is Winid. Under steady
conditions. the surface temperature T, of a plane wall of thick-
ness 24, a eylinder of outer radius 1, and a spheve of radius r,
in whick heat is generated at a constant rate of & per unit vol-
wmme in a surrounding medium at 7, can be expressed as

2L

’[::piann-u‘aii = L+ n
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where £ is the convecdon heat transfer coefficient. The maxi-
i fesperature rise between the surface and the midsection
of a medium is given by

n “!'L?‘
ATl plane wall = "5_’.2_[{_
-

g orl

A ,Inm\, eylinder = 4—!:
¢t

é‘?;mx, spfwsa = Ef—s.[(—

When the variation of thernal conductivity with temperature
A7) is known, the average value of the thermal concductivity in
the temperadure range between T and 7, can be determined
{rom

j “KNaT
LA N

Then the rate of steady heat transfer through a plane wall,
cylinelrical Jayer, or spherical fayer can be expressed as

. PR

lei.llw walp = k‘n‘cA L =

i

LH-T, 2wl

£ 2T A{])dl
nle/n)  nlwin) I
h—-1
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The variation of thermal conductivity of @ mnaterial with
temperature can often be approximated as a linear function and
expressed as

K1) = B{l + B7)

~where B is called the temperature coelficient of thermal

conductivity.
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One-dimensional heat transfer through a simple or composite
body expased to convection from both sides to medivros at
tempetatures T, and T, can be expressed as

N
= W
=% W)

al

where R, is the total thermal resistance between the two
medivns. For a plane wall exposed to convection anr both
sides, the ol resisiance is expressed as

‘ ‘ L
1"elniz.! = jﬁnn».l + Rwu!i + ]er,um. ;= KA fiz A

1
BA

"This relation can be extended to plane walls that consist of two
or ore layers by adding an additional resistance for eacl ad-
ditional layer. The elementary thermal resistance relations can
be expressed as follows:

- , . L
Conduction resistance (plane wally, Ryu = T

nln/n)
Conduction resistance {cylinder): Ry = ———2; Tk
N i)
- » ; o n
Conduction resistaince (spher). Ry = y Py
GESTH
Convection resistance: R =
Convection resistance: o = T
, 1 _ R
Iaterface resistance: Riestrer = = —
< < interface hr' A A
s . 1
Radiation resistance; B =
i ek A

where Ji, is the thermal contact conductance, &, is the thermal
contact resistance, and the radiation heat iransfer coefficient is
defined as

By = eor (T2 4 T2

aurf) { ]S + ‘{RHIT)
Onge the rate of heat transfer {s available, the temperacure drop
across any laver can be determined from

AT=OR

The thennal resistance concept can also be used to solve steady
heat wansfer problems invelving paraliel lavers or combined
series-parallel arrangements.

Adding Insufation to a cylindrical pipe or a spherical shef!
will inerease the rate of heat transfer if the outer radius of
the insulation is less than the critical radius of insulation.
delined as

. - kim

o, cstinder = —7?_
. . 2kim
f(r.§|l|l(‘lt' - I

The elfectiveness of an insulation is oflen given in terins of
its R-value, the thermal resistance of the material per unit sur-
face area, expressed as

I~

Pvalue = {flar insukation)

s

where [ is the thickness and s the thernzal conductivity of the
material.

Finned surlaces are commonly used in practice 10 enhance
heat transfer. Fins enhanec heat transfer from a swrface by ex-
posing a larger surface rea to convection. The temperature
distribution aleng the fin for very long fins and for fins with
negligibie heat transfer al the fin are given by

e - 7.
Very fong firn: ;})T =
& "
Ry - 7. coshall —
Adiabatic fin tip: }‘ >_ T CGSC;:JE i Y
& % - el

whete a = \/F/kA, pis the perimeter, and A, 15 the cross
sectional area of the fin. The rates of heat wansfer for both
cases are given to e

oy T
fong Qg = f(.’%(—‘ = \IpRA (T, - T)
- 1754
fin:
Adiabatic oF
- Quiteany = ~kA.el = NRPRA AT, ~ 1) 1anh af
tp: S S

Fins exposed to convection at their lips can be treated as fins
with insulated tips by using the corrected length L, = L + AJdp
instead of the actal fin length,

The temperature of a fin drops along the fin, and thus the
heat transfer from the fin will be fess hecause of the clecreasing
temperature cifference toward the fin tip. To account for the ef-
fect of this decrease i temperature on heat transfer, we define
fin elffciency as

g = Qi Actual hoat transfer rate from the fin
T O e deal eat transFer eate from the fin if
the entive fin were ai base lempeaiare

When the fin efficiency is available, the rate of heal wransfer
from a fin can be determined from

Qo = 00 Qi s = Ny (1= T

The perfomyance of the {ing is judged on the basis of the en-
haacement in heat transfer relative to the no-fin case and is ex-
pressed in terms of the fin elfectiveriess gy, defined as

' ] Heal transfer rafe from
o i the fin of hase area A,
v 5o T hAL (T, — T.)  Heat transfer rate from
the surface of area A,

Here, A, is the cross-sectional area of the fin at the base and
o a1 Yepresents the rate of heat transfer from dis avea if no
fins are attached to the sinface. The overalf effectiveness for a
finned surface is defined as the ratio of the total heat transfer
from the finned surface to the beat transfer from the same sur-
face il there were no [ins,

" leal. fin

5 _ h(“‘tm[‘m * Mg A!‘m}(?:} - T/}
“fin, oveall ™ s
" Qwsal. no [in

B I"Auo {in (ﬂ, - T;)

Fin efliciency and [in effectiveness are related & each other by

Certain multidimensional heat transfer problems involve two
surfaces maintained at constant temperatures 7y and T, The
steacly rate of heat transfer between these two surfaces is ex-
pressed as )

@ =SKT, - 1)
where Sis the conduction shape factor that bas the dimen-

sion of lengih and & is the thermal conductivity of the medium
between the surfaces,

Wi 9 9 12




In this chapter we considered the variation of temperature with
time as well as position In one- ar multidimensianal systems.
We [irst considered the Jumped spstems in which the tempera-
ture varies with time but remains uniform throughout the sys-
temn at any time. The temperatuse of a lumped body of arbitrary
shape of mass o volume V¥, surface area A, density p, and
specific heat €, initially at & uniform temperature 7, that is
exposed to convection at time £ = 0 in a medium at tempera-
ture T, with & heat ransfer coefficient /ris expressed as

n-r
-7, ¢
where
hA,  p )
b=CV oL (1s)

-l 1

is a positive guantity whose dimension is {time) ™. This rela-
tion can be used to determine the temperature 7(0) of a body at
time £ or, alicrnately, the time frequired for the temperature to
reach a specified value 7. Once the temperature 734 at time
tis available, the rare of convection heat transfer between the
body and its envirenment at thal fime can be determined from
Newton’s law of cooling as

O = AT ~ T (W)
The total amoun: of heat transfer between the hody and the sui-
rounding medinm over the time interval £ = Q1o £is simply the
change in the energy content of the body,

S¥d w1 10 210

Q=mC[T) - T] (k])

The amount of heat transfer reaches its upper fimit when the
body reaches the surrounding temperature T.. Therefore, the
maxinnan heat transfer between the bady and its surroand-

ings is

Qn‘.ax = HPC;; (Ta'- - }ri) (R-D
The ervor involved in lumped system analysis is negligible
when

o,

Bi = T 0.1

where Bi is the Biot numberand L. = WA, is the characieristic

length.

When the lumped systom analysis is not applicable, the vari
ation of emperature with position as well as time can be deter-
mined using the transient temperature charts given in Figs.
4-13, 4-14, 4-15, anel 4-23 for  large plane wall, a long cylin-
der, a sphere, and a semi-infinite medium, respectively. These
charts are applicable for one-dimensional heat transfer in those
geomedries, Therefore, their use is limited to sitvations in
which the body is initially at & uniform temperature, all sur-
faces are subjected to the same thermal conditions, and the
body does not involve any heat generation. These charts can
also be used to determine the total heat transfer from the body
up to & specified time 1.

12
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wainerical finite difference method is based on replacing deriv-
atives by differences, and the finite difference formulation of a
heat transfer problem is obtained by selecting a sufffcient num-
ber of points in the region, called the nodaf points or nodes,
and writing energy balances on the volume elements centered
about the nodes.
-For steady heat transfer, the energy balance on a volume el-

ement can be expressed in general as

E Q + gl/«:l::mc:n =0

All sides

whether the problem is one-, two-, or three-dimensional. For
convenience in formulation, we always assume all heat trans-
fer to be into the volume element frem all surfaces toward the
nade under consideration, except for specitied heat Tlux whose
direction is already specified. The finite difference formula-
tinns for a general interior nede under steady conditions are ex-
pressed for spme geometries as follows:

One-dimensional

Loy =21, + 10 &
steady conduction = 3 ’)"R o % =0
. Ax)e
in a plane wall: ¢
Tiwo-
dimensional

5 JZ

steady Lol ©
conduction Tl‘s:ﬁ + Tl‘np + Iv::phi + E}oll(:m - 4‘7;)“156‘ + i =9
in rectangular
coordinates.

where Axis the nodal spacing for 1he place wall and Ax =
Ay = /is the nodal spacing for the two-dimensional case. lisu-
lated boundaries can be viewed as mirrors in formulation, and
thus the nodes on insulated boundaries cart be treated as inte-
rior nades by using mirror images.

The finite difference formulation at node 0 at the left bound-
ary of a plane wall for steady one-dimensional heat conduction
can be expressed as

. T, T,
O]e‘ﬂ anrface + kA T -

Si(AAX2Z) = 0
where AA2 is the volume of the volume, g; is the rate of heat
generation per unit volume at x = 0, and A is the heat transfer
area. The form of the first term depends on the boundary con-
dition at ¥ = 0 (convection, radiation, specified heat flux, eic.).
The finite difference formuiation of heat conduction prob-
lems usually results in a system of N algebraic equations in N
tntknown nodal temperatures that need to be solved simullane-
ausly. There are numerous systematic approaches available in
the literature. Several widely available eguation solvers can

also be used t solve a system of equations simultaneously at
the press of a buiton.

The finite difference formulation of fransient heat conduc-
tion problems is based on an energy balance that also accounts
for the variation of the energy content of the volume element
during a time interval A, The beat transfor and heat generation
teyms are expressed at the previous tine step 7in the explicit
method, and at the new time step # + 1 in the /mplicit method
For a general node m, the Tinile difference formulations are
expressed as

f‘.'){ﬁif(?jf E O'.'*“ G’ =V I ,{,. f,;,
method: = 4 clement 2 ¥elemon At
VS T
Implicit L -1
’ ()’ by (il = 1 Voo
,;u(}[h()(j \!Em L]{Hl n{ Liemiend ;’l!
where 77 and 727! are the temperatures of node m at times

&= Atand tyy = (i + DAF respectively, and 757 — T rep-
resents the temperature change of the node during the time in-
teival As between the time steps Jand 7 + 1. The explicit and
implicit formulations given here are quite general and can be
used in any coordinate system regardless of heat {ransfer being
one-, two-, or three-dimensional.

The explicit formulation of a general interior node for one-
and two-dimensional heat transfer In rectangular coordinates
can he expressed as

Orze- GiAR
dimen-  TiFle (T + T3+ (120 0l < '"k
sfonal case:
Two- \ .
i 4 T t
dimen- lmdl - (TM ‘op Il“lghl + ‘Flmltom)
’ T
sional + {1 47) oy . gfodejy
casea! node i I
where
o wdAr
(e
Ax

II:@: !.'Idf df[f tsivifl y o[ lho metimm.

The implicit method is inherently stable, and any value of A¢
can be used with that method as the time step. The largest value
of the time step Az in the explicit method is limited by the sfa-
bifity criterion, exprossed as: the cocfficionts of alf T) in the
T expressions (called the primary coefficients) must be
greater than or equal to zere for afl nodes m. The maximum
value of Aris determined by applying the stability criterion to
the equation with the smallest primary coefticient since it is the
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