1642

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

Design and Potential Performance of
Goal-Oriented Job Scheduling Policies
for Parallel Computer Workloads

Su-Hui Chiang and Sangsuree Vasupongayya

Abstract—To balance multiple scheduling performance requirements on parallel computer systems, traditional job schedulers are
configured with many parameters for defining job or queue priorities. Using many parameters seems flexible, but in reality, tuning their
values is highly challenging. To simplify resource management, we propose goal-oriented policies, which allow system administrators
to specify high-level performance goals rather than tuning low-level scheduling parameters. We study the design of goal-oriented
policies, including 1) multiobjective models for specifying trade-offs between objectives; 2) efficient search algorithms for searching the
best schedule; and 3) performance measures for optimization in the objectives with respect to two common performance requirements:
preventing starvation and favoring shorter jobs. We compare goal-oriented policies with widely used backfill policies. Policies are
evaluated by simulation using real job traces from several computing systems. Our results show that by automatically optimizing
performance according to the given objectives through search, goal-oriented policies can improve the performance of backfill policies.

Index Terms—Parallel job scheduling, multiobjective models, goal-oriented policies, backfilling, search algorithms.

1 INTRODUCTION

N general-purpose parallel computer systems, there are

typically multiple conflicting scheduling performance
goals. Current production job schedulers have limitations in
dealing with such multiobjective problems. To address the
problem, we propose goal-oriented scheduling policies. We
study several design and implementation questions and
evaluate potential performance of the policies.

Most production job schedulers use a variety of
nonpreemptive policies, based on queue or job priorities.
Using queue-based priority (e.g., PBS [1] and LSF [2]), jobs
in the highest priority queue are scheduled first. As a
simple example, to favor short jobs, we can assign the
highest priority to short-job queues; at the same time, we
may need to place a limit on the number of short jobs that
can be simultaneously executed, to prevent starving other
queues. Using job-based priority (e.g., Maui Scheduler [3]),
jobs are prioritized using a weighted sum of job measures.
For example, to favor short jobs, we can assign a large
priority weight to the job expansion factor (i.e., current
slowdown), which is the sum of job runtime and job
current waiting time divided by the job runtime. To reduce
starvation, we can use some weight for the job current
waiting time, to boost the priority of jobs as they wait; we

e S.-H. Chiang is with the Department of Computer Science, Portland State
University, PO Box 751-CMPS, Portland, OR 97207-0751.
E-mail: suhui@cs.pdx.edu.

e S. Vasupongayya is with the Department of Computer Engineering,
Prince of Songkla University, Room R400, Robot Building, Hadyai,
Songkla 90112, Thailand. E-mail: vsangsur@eng.psu.ac.th.

Manuscript received 6 Sept. 2007; revised 8 Feb. 2008; accepted 25 Feb. 2008;
published online 14 Mar. 2008.

Recommended for acceptance by D. Trystram.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-09-0307.
Digital Object Identifier no. 10.1109/TPDS.2008.48.

1045-9219/08/$25.00 © 2008 IEEE

might also assign some weight to the job requested
resources since large-resource jobs often incur a long wait
under heavy loads. Configuring these parameters is highly
challenging. Furthermore, their values need to be con-
tinually tuned to adapt to the workload changes.

To simplify the administrative task, we propose goal-
oriented policies, which allow decision-makers to specify
high-level performance goals rather than tuning low-level
scheduling parameters. High-level goals can be as abstract
as “favoring shorter jobs,” in which case the scheduler
determines what measures will be optimized. Alternatively,
the administrators can explicitly specify the objectives, such
as “minimizing the average slowdown.” In either case, the
schedulers, and not the administrators, figure out how to
prioritize the jobs.

To design goal-oriented policies in the presence of
conflicting objectives, several questions need to be studied.
First, since no single solution optimizes all objectives, how
should we select the schedule from all possible schedules at
each scheduling decision point? The concept of multi-
objective problems is certainly not new. In the parallel and
grid resource management field, the common approach is
to aggregate objectives into a scalarizing function, thus
converting a multiobjective problem to a single-objective
problem (e.g., [4] and [5]). The problem is that determining
appropriate weights for the scalarizing function is difficult.
In the case it is computationally feasible and human
interaction is possible, one can find a set of optimal
solutions in the sense of Pareto optimality and let the
decision-makers select the final solution. Note that a Pareto
optimal solution is one that is better than any other possible
solution for at least one objective. However, for the problem
studied here, finding even one optimal solution is not
computationally feasible. In addition, it is not practical to
require feedback from system administrators at each

Published by the IEEE Computer Society

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

TABLE 1
Notation
Symbol | Definition
Per-i N Number of job requested nodes
er-job T Actual iob ;
metric ctual job runtime)
X Job slowdown = job turnaround time / T
Other p Offered load in simulation
metrics L Max. # of visits to tree nodes during search

scheduling decision point, since the scheduling events are
frequent. In this study, we will investigate and design
multiobjective models that make trade-off among objectives
in an intuitive manner and require no manual configuration
for low-level parameters.

The second question concerns the efficiency of search-
ing the schedule at each scheduling decision point. Since
the number of possible schedules grows faster than
exponentially with the problem size (to be discussed in
Section 2.4), it is not practical to evaluate all schedules.
The question is in what order schedules should be
evaluated so that a good enough schedule can be found in
a reasonable amount of time.

Another question concerns the measures to be optimized
in the objectives. The problem arises because for a given
high-level performance goal, such as preventing starvation,
more than one measure may be used for optimization. To
define appropriate objectives, we will study the perfor-
mance impact of optimizing alternative measures.

In this paper, we consider two performance goals,
commonly placed on general-purpose parallel computer
systems. They are preventing starvation and favoring
shorter jobs. We investigate the performance impact of
alternative objective models and measures for optimization.
Our goal-oriented policies are compared with backfill
policies, which are used on many production parallel
systems because of their high performance. Policies are
evaluated using event-driven simulation of real job traces
from three parallel computer systems. Results are reported
for the 10 monthly job traces from a 128-node Intel Itanium
(IA-64) Linux cluster at NCSA. Results for two IBM-SP2
traces from SDSC and KTH [6] are qualitatively similar and
omitted to conserve space. Part of our results were reported
in two previous papers [7], [8].

The main contributions of this study include the
following;:

e To deal with conflicting scheduling objectives in
parallel computer systems, we propose goal-
oriented job scheduling policies, which not only
greatly simplify the administrative task but also
have the potential to significantly improve the
performance of traditional priority policies.

e We study the impact of using alternative objec-
tive models and optimizing alternative measures,
with respect to two common scheduling perfor-
mance goals: preventing starvation and favoring
shorter jobs.

o We design fairly intuitive Eq-Tradeoff objective
model, which can be used to simultaneously
optimize multiple objectives.

1643

TABLE 2
Capacity and Job Limit on NCSA/IA-64

Capacity | Max. Job Size

(#Nodes) N T Period
2h 6/03 — 11703
128 128 1 oan | 12003 - 3004

e To prevent starvation, we propose to minimize the
total excessive wait, which may be more appropriate
than minimizing the maximum wait time, especially
in the presence of other objectives that optimize
average performance measures.

Section 2 provides background information for this
study. Section 3 defines objective models and measures to
be optimized. Section 4 discusses our evaluation method.
Section 5 studies several policy design issues. Section 6
evaluates performance of goal-oriented policies using
alternative objectives. Section 7 summarizes our results.

2 BACKGROUND

In this section, we provide information of the workloads
studied and briefly review relevant work, including
previous parallel job scheduling policies, representative
approaches for dealing with multiobjective problems, and
search algorithms for exploring the solution space. For
convenience, Table 1 defines some of the notations used.

2.1 Workloads

In this section, we provide some information of the NCSA/
IA-64 monthly workloads during June 2003-March 2004,
used for evaluating policies.

Table 2 summarizes the system capacity and job limits.
The system contains 128 dual-processor nodes; the
smallest allocation unit is one node. The job runtime
limit was 12 hours in the first six months and increased to
24 hours in December 2003.

Table 3 summarizes the workload characteristics of
each month, including the number of submitted jobs,
processor demand (defined as N x T of the submitted
jobs, expressed as a fraction of the total nodes-time
available on the system in a month), average job size (X,
T, and N x T), and some information of the distributions
of N and T. The monthly processor demand is typically
70-80 percent, except in July 2003 where it is close to
90 percent. Typically in each month, 3,000-4,000 jobs were
submitted, 80-90 percent of jobs requested no more than
eight nodes, and 80-90 percent of jobs had a runtime of
under 5 hours. Other than that, workload characteristics
vary widely from month to month. For example, the
average job runtime ranges from 1 to 4.5 hours, and
average nodes ranges from 5 to 23.5.

Two monthly workloads stand out: 1) in July 2003,
18 percent of the jobs requested over 32 nodes, compared to
only under 5 percent in most other months, and 2) in
January 2004, over 30 percent of the jobs had a runtime of at
least 5 hours, compared to 15 percent in most other months.
In addition, January 2004 has a larger average job requested
nodes than in most of the other months (except June and
July 2003), due to an almost 30 percent of jobs in

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1644

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

TABLE 3
Summary of Monthly Load and Workload Characteristics on NCSA/IA-64

Month # Jobs Proc. Avg. job size Fraction of jobs in each class
demand N TINXT[[N<SB8[I9SNIS3R [3RINIJ]JT<5h [5hIT<IOh [I0h T

Jun 03 2191 82% 12.1 | 1.4h | 34.5h || 74.2% 19.0% 6.8% 90.3% 4.0% 5.7%
Jul 03 1399 89% 23.5 | 1.9h | 60.7h 60.7% 21.1% 18.2% 84.8% 7.8% 7.4%
Aug 03 3220 79% 73 | 1.1h | 23.5h || 86.3% 9.5% 4.2% 91.0% 3.7% 5.3%
Sep 03 3056 72% 9.1 | 1.4h | 21.7h || 80.7% 15.0% 4.4% 90.3% 4.6% 5.0%
Oct 03 4149 1% 5.0 [2.0h | 16.3h || 88.8% 9.2% 2.0% 86.6% 7.2% 6.3%
Nov 03 3446 73% 6.0 | 2.5h | 19.5h || 87.8% 7.7% 4.5% 82.0% 10.7% 7.3%
Dec 03 3517 74% 5.6 [3.6h | 20.2h || 86.9% 9.6% 3.6% 76.2% 12.7% 11.1%
Jan 04 3154 73% 10.7 | 4.5h | 22.1h || 69.8% 27.3% 2.9% 67.2% 19.9% 12.9%
Feb 04 3969 74% 5.0 | 3.1h | 16.6h || 90.4% 7.1% 2.4% 84.2% 4.6% 11.2%
Mar 04 3468 75% 5.8 | 2.4h | 20.6h || 88.5% 8.2% 3.4% 88.0% 2.1% 9.9%

January 2004 requesting a medium size, i.e., 9-32 nodes. The
distinct features of July 2003 and January 2004 present a
great challenge for scheduling policies. As can be seen, the
10 monthly workloads provide a variety of workloads for
evaluating scheduling policies.

2.2 Priority Backfill Scheduling Policies

The first implementation of first-come-first-served (FCFS)-
backfill [9] was reported for an IBM SP1 in 1995. Since
then, backfill policies have been extensively studied, and
the backfill feature has been implemented in many widely
used production schedulers, including the Maui Scheduler
[3], LSF [2], PBS [1], and LoadLeveler [10]. Because of the
high performance and popularity of backfill policies, we
use them as baseline policies for evaluating our goal-
oriented policies.

Under the original FCFS-backfill, jobs are considered for
scheduling in their arriving order, and the first waiting job
that cannot be started due to insufficient free resources is
given a reservation; jobs in the back of the queue can be
backfilled on idle resources as long as they will not delay the
reservation.

Many papers proposed priority functions to improve
FCFS-backfill (e.g., [11], [12], [13], and [14]), and some
papers studied the performance impact of giving more
than one reservation [15], [16]. The key results are
summarized below. First, there is a trade-off between
improving the maximum job wait time and improving
average-performance measures. In particular, largest slow-
down first (LXF)-backfill, which gives priority to the job
with the largest expansion factor, significantly improves
the average slowdown and average wait but gives a
worse maximum wait, compared with FCFS-backfill. In
the extreme case, SJF-backfill, which gives priority to the
shortest job, may starve long jobs and, thus, is not a
practical policy. Second, a few reservations can improve
the maximum wait of one reservation without signifi-
cantly degrading the average performance measures, but
too many reservations can degrade the average perfor-
mance without further improving the maximum wait.

In addition, many other variations of backfill policies
have been proposed. Two papers that proposed adaptive
policies [17], [18] are most relevant to our work. Under
these adaptive policies, different backfill policies may be
used in different periods of time. To choose the best policy
for the next period of time, the schedulers conduct an online
simulation of particular backfill policies, using workloads

that recently ran on the system. These two approaches differ
in when and how online simulations are performed and
what backfill policies are simulated. Although the idea of
choosing the best policy is somewhat similar to choosing
the best schedule in our goal-oriented policies, their policies
are fundamentally different from ours. First, they are
concerned with only a single performance measure, while
we are concerned with multiple objectives. Second, they can
only choose a policy from a set of particular policies, while
we do not have such a limitation.

2.3 Dealing with Conflicting Objectives

As discussed in Section 1, finding the set of Pareto optimal
solutions is not practical for the problem studied. Thus, we
focus on methods that convert multiobjective optimization
problems into some forms such that a single solution can be
obtained. Three representative methods are reviewed
below. For a more comprehensive survey of multiobjective
combinatorial optimization, we refer to [19].

A weighted objective combines multiple objectives into a
weighted sum of measures. While simple, choosing the
weights can be difficult. Thus, we do not consider this
approach. However, interestingly, one of the objective
models (C-Tradeoff) studied in this paper turns out to use
a weighted objective with the weights dynamically and
automatically determined at each scheduling decision
point.

In lexicographical ordering, objectives are ranked by their
importance and optimized one by one according to their
importance. Although we consider equally important
objectives, this simple approach may still be applied if
appropriate measures are optimized. We adopt this
approach to define the Lexical model, which is discussed
in Section 3.2.

In goal programming, a target value is specified for each
objective; the aim is to minimize the deviation from
specified goals. We do not consider this approach because
it is difficult to determine the target values and compute
deviation.

2.4 Search Algorithms

At each scheduling decision point, the scheduler evaluates
possible schedules to search for the final schedule, accord-
ing to the given objectives. Since each permutation of
waiting jobs is an eligible schedule, the number of possible
schedules grows faster than exponentially with the number
of waiting jobs. For example, as shown in Fig. 1d, with only

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

1645

— — —_—
1 1 2 3 4 1 2 3 4
7 AN 7 / Ve N 2NN /AN AN\
2 2 3 41 1 1 341 3 412 41 23
/ N/t / / ANANALANRENET
3 4241233 2 2 4234111 412 311
| [NRE RN | | Porrrprrrrnnrerrnetd
4 3434 4 3 2213413 2411 2312
(a) b) (©)
0 0
Wait jobs # Paths # Nodes I~ e S ——
4 24 64 2 3 4 1 2 3 4
8 40K 110K l/ l/ l/ 3“ 4 !\4 5\4 ;\3
10 3,620K 9,864K 3 4 3
15 1,307,674M | 3,554,627TM / / / AR A R A AR A
2 2 2 L 3 2 2 242 141 142 11
(Note: ‘K’ = 1000; ‘M’ = 1000,000) 4| J] i ; l 3' J 1' 3' 2'

(d

Fig. 1. lllustration of the LDS and DDS algorithms using a sample search tree of four jobs. (a) Zeroth iteration. (b) LDS: first iteration. (c) LDS: second
iteration. (d) Tree size as a function of waiting jobs. (e) DDS: first iteration. (f) DDS: second iteration.

eight waiting jobs, there are over 40,000 possible schedules;
with 10 waiting jobs, it is over 3.5 million. As evaluating all
schedules is not computationally practical, the best we can
do is to find a “good enough” solution; the key to the
success of search algorithms is to explore promising
solutions as soon as possible.

Roughly speaking, there are two classes of search
algorithms: systematic search (or the so-called tree search)
and local search. In this study, we adopt systematic search
algorithms for their simplicity. Our future work will
consider combining systematic search with local search, as
suggested in [20], to possibly improve the search efficiency.
Below, we discuss how schedules are evaluated using
systematic search algorithms.

Each schedule defines the order in which the currently
waiting jobs are considered for scheduling. When a job of a
given schedule is considered, the earliest start time of the
job is determined, and the resources are tentatively allocated
for the duration of the job runtime. The earliest start time of
the job is computed such that the job will not take away
resources from any currently executing jobs during their
execution, nor can it delay the start time tentatively
scheduled for any waiting job (considered before this job
in the same schedule). After the last job of a schedule is
considered, the performance measures of the schedule are
computed. If they are better than that of the best schedule so
far, this schedule replaces the best schedule.

The role of the search algorithm is to determine the order
in which candidate schedules are evaluated. Under sys-
tematic search algorithms, the candidate schedules are
organized into a tree according to some branching heuristic,
and the tree is traversed in a particular order, independent of
the branching heuristic. The search algorithm typically
refers to the tree traversing algorithm, but we also use the
term to refer to the combination of the tree traversing and
branching heuristic when there is no confusion.

In this study, we consider two commonly used
discrepancy-based systematic search algorithms for traver-
sing the tree: limited discrepancy search (LDS) [21], [22],
and depth-bound discrepancy search (DDS) [23]. To
illustrate the structure of the search tree and search
algorithms, we use an example of four waiting jobs,

numbered 1 to 4, in their arriving order. Clearly, there are
24 permutations of the jobs and, thus, 24 schedules. Note
that different schedules may result in the same solution,
i.e., they assign the same start time to each waiting job, but
this is not known until they are evaluated.

Fig. 1a shows an example of organizing the 24 schedules
into a tree. The root is a dummy node, labeled “0”; every
other node is labeled by the job number. Each path, from the
root to a leaf, constitutes a schedule. Thus, the number of
leaves is equal to the number of possible schedules. For
example, the leftmost path, 0-1-2-3-4, shown in bold in
Fig. 1a, is the schedule in which jobs are considered in the
arriving order.

Therootis said to have a depth of zero, each child of the root
has a depth of one, and each child of a depth-one node has a
depth of two, and so forth. At theroot, there are four branches,
representing the four choices of the first job in the schedule.
Each depth-one node has three branches, representing the
three choices of the second job in the schedule. In general, ina
tree of n jobs, each depth-i node has n — i branches, and the
tree contains n! paths and O(n!) nodes. Fig. 1d shows several
sample tree sizes to give anidea of how fast the tree size grows
with the number of jobs. To be realistic, only the path being
evaluated, and not the entire tree, is stored.

This sample tree uses the FCFS branching heuristic, in
that the branches, from left to right, at each node are in the
job arriving order. At any depth-i node, only the leftmost
branch follows the heuristic; any other branch is called a
discrepancy at depth i + 1, by convention. For example, the
leftmost path, 0-1-2-3-4, is the only path that contains no
discrepancy; the path 0-2-1-3-4 contains exactly one dis-
crepancy at depth one (i.e., job 2).

The assumption of discrepancy-based search algorithms
is that a good branching heuristic is likely to make only a
few mistakes. Thus, to find promising solutions soon, the
idea is to visit paths with fewer discrepancies first. Both
LDS and DDS proceed in iterations. In each iteration, one or
more paths (i.e., schedules) are evaluated. As many paths
are compared as the time permits. For the four-job example,
Fig. 1 shows the paths in bold, evaluated in the first three
iterations (zeroth, first, and second) by LDS and DDS. The

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1646

paths are visited in the order from left to right as they
appear in the tree, which is further explained below.

LDS visits the paths that contain the fewest discrepan-
cies first. On the zeroth iteration, LDS always branches left
with the branching heuristic, i.e., 0-1-2-3-4 highlighted in
Fig. la. On the first iteration, LDS visits the six paths
containing exactly one discrepancy at any depth, high-
lighted in Fig. 1b. Similarly, on the second iteration, LDS
visits the 11 paths containing exactly two discrepancies,
highlighted in Fig. 1c.

DDS biases the search to the discrepancies high in the
tree, by iteratively increasing the depth at which discre-
pancies occur. The motivation is if there are mistakes in the
branching heuristic, the mistakes are more likely to occur at
the top of the tree than at the bottom. Specifically, on the
ith iteration, DDS visits each path containing a discrepancy
at depth 4, any number of discrepancies above depth i, and
no discrepancy below depth i. On the zeroth iteration, DDS
visits the only path containing no discrepancy, same as in
LDS. On the first iteration, shown in Fig. le, DDS visits
three paths, each containing a discrepancy at depth one and
no discrepancy below. On the second iteration, shown in
Fig. 1f, DDS visits eight paths containing zero or one
discrepancy at depth one and one discrepancy at depth two,
but no discrepancy below depth two.

By biasing search to discrepancies high in the tree, DDS
explores early in time the schedules that differ in their first
few jobs, which have the greatest effect on the start times of
all waiting jobs. For example, as shown in Fig. 1, the first
four schedules evaluated under DDS have different first job,
while that under LDS have the same first job (i.e., job 1).
Thus, if the branching heuristic is not good enough, it is
likely that DDS explores promising solutions sooner than
LDS does for the problem studied.

To reduce the search space, we use a simple pruning
technique for both LDS and DDS, when applicable. The idea
is to abandon a subtree when the subtree does not contain
better solutions than that of the best schedule found so far.
For example, suppose the objective is to minimize the
maximum wait time. Then, as soon as we find that the wait
time of the job at a nonleaf node, say z, of the path under
evaluation is already worse than that of the best schedule
found so far, we abandon the subtree rooted at z. Pruning
requires comparing the partial solution at each node with
that of the best schedule found so far. Nevertheless, the
overhead is minimal compared with other computation
overhead of evaluating each node.

3 MEeASURES, OBJECTIVE MODELS, AND POLICIES

In this paper, we consider two goals: preventing starvation
and favoring shorter jobs. Although they are common
requirements, they are not specific objectives. Below, we
will first discuss the measures used for optimization in the
objectives, with respect to the two goals studied. We then
define the multiobjective models. Using these measures and
objective models, we define a set of scheduling policies to
be studied.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

TABLE 4
Performance Measures for Optimization

Type of

Measures Notation Meaning
Tw Total excessive wait
Starvation (using the dynamic threshold)
maxW Maximum job wait time
Average avgW Average job wait time
performance avgX Average job slowdown

3.1 Measures for Optimization

To prevent starvation, a simple but perhaps too strict an
objective is to minimize the maximum wait time (mazW).
As an alternative, we define a new measure, called total
excessive wait (T},), to be discussed later. To favor shorter
jobs, we consider minimizing either the average slowdown
(avgX) or average wait (avgWW), which are commonly used
for evaluating scheduling performance in previous papers.
Table 4 summarizes the measures and notation. Note that as
mentioned in Section 1, the measures to be optimized can be
either defined for each goal within the schedulers, or
directly specified by system administrators.

The excessive wait time of a job is defined to be the wait
time of the job in excess of a given threshold, w, which can
be thought of as a target upper bound on job wait time.
Note that if a job has waited no more than w, the job does
not have an excessive wait. The total excessive wait is the
sum of the excessive wait times of all jobs. To compute T},
at a given point of time, the scheduler considers only the
jobs that are still waiting at that time and computes their
current excessive waits. The threshold w can be fixed (e.g.,
50 hours), which is simple but may not perform well for
all load conditions. To automatically adapt to the load
condition, we consider a dynamic threshold, defined to be
the current waiting time of the oldest job in the waiting
queue. By default, T,, uses the dynamic threshold. For
clarity, we use T to denote the total excessive wait using
a fixed threshold.

3.2 Multiobjective Models

Two objective models are studied: Lexical and Eq-Tradeoff.
The Lexical model uses the lexicographical ordering
approach, in which objectives are ranked in their impor-
tance, as discussed in Section 2.3. To more naturally model
equally important objectives, we design the Eq-Tradeoff
model. Three variations of Eq-Tradeoff will be studied in
this paper. Below, we define these objective models.

An objective model with the objectives define a binary
relation, <, over the set of candidate schedules as follows
(informally): ® < I' if the schedule ® is considered better
than I', for any schedule @, I'. If < is a total order,! then the
best schedule is uniquely defined (provided that all
schedules have been evaluated), i.e., the best schedule is
independent of the order in which the schedules are
evaluated. As it can be seen later, the relations studied
here are not total order because they lack the totality
property, i.e., not every pair of schedules can be compared

1. A relation < is a total order over the set II, if for any a # b # c €11,
it has the following three properties: 1) asymmetric: a <b=b £ q;
2) transitive: a < b and b < c=>a < ¢; and 3) totality: a < b or b < a.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

1647

TABLE 5
Definition of Objective Models that Minimize Two Measures = and y

Model Notation

Condition for which ® < T" (i.e., ® is better than I')

Lexical Lexical(z—y)

M &z(T,) > 0,
() £L(T,®) =0 and A, (T, ®) >0

or

Equal-Tradeoff Tradeoff(x:y)

Lo (00) | Ay (T
x

>0

(1) I'z: denotes the value of x of the schedule I'.

Notation and definition: for any schedules I' and ¢ and any measure x,

(2) Az (T, @) = 'y — Dy denotes the difference between I' and & on the measure .

Version A: & =T4; §="Iy;
Version B: & = Minimum{T'z, 5 };
Version C:

For Equal-Tradeoff model, three versions of & and g, with respect to the schedules I" and @, are defined:

¢ = Minimum{T'y, ®, };
Z and g are approximately lower bounds of = and y, respectively, at the time when I' and ® are compared
(2 and ¢ are derived based on backfill policies, explained in the text)

(for they have the same quality according to the given
model). However, a relation that has the asymmetric and
transitive properties still guarantees that the set of best
schedules is uniquely defined, which will be referred to as
the uniqueness property, for convenience. Among the best
schedules, the one evaluated first will be chosen, as it more
closely follows the search heuristics. Having the uniqueness
property is ideal but perhaps not critical, since typically not
all schedules can be evaluated in time. We will comment on
the property of each model later.

For the purpose of explaining the models, we assume
that our objectives are to minimize x and y. Our future work
will extend the models to deal with more than two
measures. Further assume that I is the best schedule found
so far in the given scheduling epoch, and ® is the next
schedule to be evaluated. Table 5 summarizes the condition
under which ® < T for each model, which will be further
discussed below. For convenience, in Table 5, we also define
two variables: I', and A, (T, ®), for any measure = and any
schedule T" and ®. Note that if A, (T", ®) > 0, it is the amount
by which ®, improves I'; if A,(I',®) <0, then ®, degrades
I, by —A, (T, ®). The difference as defined is strict in that
two values are considered different, albeit a tiny difference.
Later, in Section 3.3, we will loosen the definition to tolerate
marginal differences.

Lexical model. Denoted by Lexical(zx — y): In this
model, * dominates y. That is, among the candidate
schedules evaluated, the one with the best z value is
chosen; the y value is only used to break a tie, if needed.
This model is simple and has the uniqueness property.
Although designed for the cases where the objectives can
be ranked, it may be used to model roughly equally
important goals, if the dominating measure z is chosen
such that there is some room for optimizing y. Note that
this is the model studied in our previous paper [7] and was
called the hierarchical model.

Eq-Tradeoff model. Denoted by Tradeoff(x : y): In this
model, z and y are equally important. Thus, Tradeoff(z : y)
is equivalent to Tradeoff(y : z). Under this model, for & < I,
one of two conditions has to hold: 1) ® improves at least one
measure and does not degrade the other measure, or 2) ®
improves one measure and degrades the other measure, but
the improvement is more than the degradation, computed
as the ratios of the actual improvement and degradation to
some reference values of the corresponding measures. The
above two conditions can be combined into a single

condition: A,(I", ®)/& + A, (T, ®)/y > 0, where & and y are
the reference values of x and y, respectively. To see this, let
us assume, without loss of generality, that ®, improves I',.
Then, for ® < I', either Condition 1 is true, which means
A, (T, ®) > 0and A (T, ®) > 0; or Condition 2 is true, which
means A, (I, ®)/z > —A, (T, ®)/y. In either case, we have
AT, ®)/& 4+ A (T, ®)/y > 0.

Three versions of reference values for the Eq-Tradeoff
model are studied. Note that the version of reference values
is not intended to be a configurable parameter, rather we
will compare different versions and use the best one to
define the model. For convenience, the binary relations
defined by the three versions A, B, and C are denoted by
<4, =B, and <, respectively. The relations <z and <¢
have the uniqueness property, but <4 does not, which will
be discussed below (without proof). Note that version A
was used in our previous paper [8].

In version A, the reference values are defined by the best
schedule found so far, say I'. Thatis, £ =T', and § =T,. As
an example, let I'; = 100 and @, = 20, then ¢, improves I,
by (100 — 20)/100, i.e., 80 percent. Conversely, if I', = 20
and ®, = 100, then &, degrades I', by —(20 — 100)/20, i.e.,
400 percent. Clearly, an improvement to any measure is
always less than 100 percent in version A. Thus, a
degradation of over 100 percent to any measure of I" will
not be accepted to replace I' in any case. Version A is
intuitive in that the changes to I' are computed against the
quality of I'. Unfortunately, since the reference values used
for comparing two schedules depend on which schedule is
evaluated first, <4 lacks the asymmetric property.
Furthermore, it also lacks the transitive property. That is,
Dy <4 Dy, Py <4 P3,..., and P,y <4 ®, do not imply
P <4 D,,. Nevertheless, under the above conditions, we
still have ®; <p ®,, which will become clear later.

In version B, the reference value of measure z is the
smaller of ®, and I',. We design this version to have the
uniqueness property. We note that a similar idea was used
as the acceptance criteria in [24] in a different context.
Using the above example again, if I'; = 100 and &, = 20,
then the ratio improvement made by ®, is 400 percent,
rather than 80 percent as computed in version A. On the
other hand, if I'; = 20 and ¢, = 100, then &, degrades I';
by 400 percent, same as in version A. In general, in the case
of an improvement, the ratio improvement computed by
version A is smaller than that by version B; in the case of a
degradation, both versions compute the same degradation.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008
TABLE 6
Goal-Oriented Scheduling Policies
Goal Policy Goal Policy
Minimizing Lexical(Ty —avgX) Minimizing Lexical(T,, —avgW)
T and avgX Lexical(avg X —Tw) Tw and avgW Lexical(avgW —Tw)
Tradeoff(Ty,:avgX) Tradeoff(T%, :avgW)
Minimizing Lexical(mazW —avgX) Minimizing Lexical(mazW —avgW)
maxW and avgX | Lexical(avgX —mazW) maxW and avgW | Lexical(avgW —maxW)
Tradeoff(maxzW :avg X) Tradeoff(mazW :avgW)

Note: For each Tradeoff policy, a prefix A-, B-, or C- will be used to indicate the version of reference values used
Note: For a policy that uses the strict difference, ”Strict” will be shown as part of the policy name.

Thus, ® <4 I'==® < I', but the reverse is not true. In
addition, it can be shown that version B is the same as
minimizing z X y. As can be seen, version B is more
aggressive than version A in replacing the best schedule
found so far, possibly by a schedule that substantially
improves only one measure to reduce the product. Thus,
version B could potentially oscillate between schedules that
favor different measures.

In version C, the reference value of each measure is an
approximately lower bound of the measure, which is
dynamically computed at the beginning of each scheduling
epoch. It is designed to provide possibly better reference
value of each measure than that of version B, while still
keeping the uniqueness property. Interestingly, it turns out
that version C is equivalent to minimizing a weighted sum
of the measures to be minimized, where the weight for each
measure z is 1/%, i.e., the inverse of the current reference
value. To avoid a high overhead of computing the reference
values, we do not actually search for the schedule that
optimizes each measure. Instead, we compute the reference
value of each measure using a priority backfill policy that
may favor the measure. Specifically, we use FCFS-backfill
for computing the reference values for mazW and T;,, and
LXF-backfill for avgX and avglW. We comment that SJF-
backfill may achieve better avgX and avgWW than that of
LXF-backfill, but they are impractical as references due to
the potential starvation problem.

3.3 Relaxed Differences

When a schedule ® improves another schedule I' for all
measures to be optimized, ® is clearly a better schedule.
However, when ® improves some measures by only a margin
and is worse for other measures, it is arguable whether ¢ is
better. The idea of using relaxed differences is to tolerate
marginal differences, i.e., a sufficiently small difference is
considered no difference. Specifically, for a measure z, the
relaxed version of A, (®,T) is defined as follows:

0,
r,—

if —e <Typ—®, <e,,
otherwise,

A, (F: QD) = { o,
where ¢, is a very small positive value, which will be
discussed later. The above definition is used only when ®
improves one measure but degrades the other. Otherwise,
strict differences are used.

The question is how small is sufficiently small. To take
into account the magnitude of the values compared, ¢, is
defined as follows: 1) for z = maxW, avgW, or avgX, we
set €, to be 1 percent of the = value of the best schedule
found so far; 2) for x =T, we set ¢, to be 1 percent of

the current maximum wait time of the jobs still waiting in
the queue (i.e., the dynamic wait time threshold used for
computing T5,).

The choice of 1 percent is somewhat arbitrary but should
be reasonable. Take z = maxzW for an example: if the best
schedule found so far has an expected maximum wait (i.e.,
maxW) of 100 hours, then ¢, is 1 hour. Thus, if the expected
maximum wait of another schedule is 99-101 hours, it is
considered the same as that of the best schedule, if the
relaxed difference is used. As for z = T,,, we do not use the
T, value of the best schedule to compute ¢,, because T}, may
be zero, which, if used to compute ¢,, would prevent any
schedule with a nonzero T, (albeit tiny) from being
considered better.

Same as the versions of Eq-Tradeoff, we do not intend to
make the definition of differences a configurable parameter.
Instead, we will choose the better definition to define
objective models. Finally, we point out that as a result of
using relaxed differences, all objective models studied lose
the uniqueness property. Nevertheless, tolerating some
marginal differences should be more reasonable than using
strict differences.

3.4 Goal-Oriented Policies Based on Search

Using the objective models and the measures discussed
earlier, Table 6 defines a set of goal-oriented policies. Below,
we comment on the policy naming and implementation.

For each policy using the Eq-Tradeoff model, there are
three versions of the policy, corresponding to the three
versions of the reference values. We will use a prefix “A-,”
“B-,” or “C-" to indicate which version of reference values is
used, e.g., A-Tradeoff(T,, : avgX). In addition, by default,
our goal-oriented policies use relaxed differences allowing
1 percent slack; policies that use strict differences contain
the label “Strict” in their names, e.g., Strict Lexical
(Ty — avgX). Note that policies using 7%, i.e., total
excessive wait using a fixed threshold, are only discussed
in Section 5.1 and omitted from Table 6.

Our policies use systematic search algorithms to find a
good enough schedule at each scheduling decision point. As
discussed in Section 2.4, a systematic search consists of a tree
traversing heuristic and a branching heuristic. We study two
traversing algorithms: LDS and DDS, and two branching
heuristics: FCFS and LXF. Thus, there is a combination of four
search algorithms. Note that the FCFS heuristic favors the goal
of “preventing starvation,” whereas the LXF heuristic favors
shorter jobs. For convenience, we denote each algorithm by
concatenating the heuristics used, e.g., DDS-LXF.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

For comparison, we impose a limit on L, the number of
tree nodes visited at each scheduling decision point. Note
that any nonleaf nodes may be visited more than once
(because each appears in more than one path), and any
node visit is counted. Section 52 will compare search
algorithms and the impact of L on the performance, and
provide some information of the scheduling overhead.

4 EVALUATION METHODOLOGY

We evaluate scheduling policies using event-driven simula-
tion of job traces, as discussed in Section 2.1. Goal-oriented
policies are compared against FCFS-backfill and LXF-
backfill, which favor the maximum wait and the average
performance measures (average slowdown and wait),
respectively. In our simulation, backfill policies give
reservation to the highest priority waiting job only, since
we do not find giving more than one reservation beneficial
for the workloads studied.

An extensive set of measures is used for performance
evaluation, including the average and maximum of wait
time and bounded slowdown, as well as total normalized
excessive wait, to be defined later. Same as in many
previous papers, we use the bounded slowdown, rather
than the actual slowdown, to reduce the dramatic effect
of very short jobs on the average slowdown measure. We
use 1 minute to lower bound the actual job runtime, i.e.,
we compute the slowdown of a job of under 1 minute as
if it was a 1-minute job.

The normalized excessive wait time measures provide some
information of jobs that incur a relatively long wait time
under each policy. For each month and the load level
simulated, two thresholds are used to compute these
normalized measures: the maximum wait and the ninety-
eighth percentile wait time under FCFS-backfill for that
month and load level. The same thresholds are used for all
policies so that different policies can be compared. The two
per-job normalized excessive wait measures are denoted by
EranlV and ERAY . respectively. The total normalized
excessive wait is the sum of the normalized excessive wait
of all jobs. Note that by definition, FCFS-backfill has a zero
total Eg’c‘llifg_bt in every month.

The performance measures of each month are computed
for jobs submitted during the month. However, to be
realistic, the simulation of each month includes a 1-week
(from previous month) warmup and a cooldown period in
which jobs (from next month) continue to arrive until all
jobs submitted during the month analyzed have started.
The cooldown period is typically a few days only.

Two levels of loads are simulated: 1) p = original load and
2) p = 0.9. Recall that most IA-64 monthly processor demand
studied is 70 percent-80 percent, except for July 2003 where it
is close to 90 percent. The workloads of p = 0.9 are artificially
created by shrinking job interarrival times, as in previous
papers (e.g., [14] and [16]), for lack of a better model. We
focus on the p = 0.9 results, since the performance difference
is larger for high load.

Finally, in this paper, we assume that job runtime
information is known a priori to the scheduler. This allows
us to focus on the full potential performance of goal-
oriented policies (and the backfill policies studied), without

1649

the complex interference from inaccurate job runtime
information. Our future work will include the results that
use imprecise job runtimes.

5 EVALUATING PoLicy DESIGN CHOICES

To design and implement goal-oriented policies, many
choices need to be studied, including fixed or dynamic
excessive wait time, which search algorithm, strict or
relaxed differences, and what reference values for the
Eg-Tradeoff model. We consider these parameters part of
the model or policy design choices, as opposed to the
parameters that can be configured by system adminis-
trators. In this section, we evaluate these design choices.
Alternative scheduling policies will be studied in
Section 6.

5.1 Sensitivity of Performance to Fixed Wait Time

Thresholds
A wait time threshold is needed for computing the total
excessive wait, which is one of the starvation measures
studied. A fixed wait time threshold, such as 50 hours,
seems simple and fairly intuitive. The question is how
sensitive is the scheduling performance to the value of a
fixed threshold.

To study this question, we use Strict Lexical(T — avgX),
inwhich 7. is the total excessive wait, computed using a fixed
threshold, w. Using the strict differences allows us to focus on
the impact of the threshold alone, but the results of using the
relaxed difference with 1 percent slack are qualitatively
similar (not shown). The policy is implemented using DDS-
LXF and L = 1,000. More about the performance impact of
search algorithms and L will be studied in Section 5.2.

We vary the value of w between 0 and 300 hours. Fig. 2
shows the results for w = 50, 100, and 300 hours. Figs. 2a
and 2b plot the maximum wait of using each w for each
month under the original load and p = 0.9, respectively. For
the original load, as shown in Fig. 2a, a maximum wait of
50 hours is achievable for each month except July 2003
(which has the highest load). However, if w > 50 hours is
used, the maximum wait typically increases; in particular,
with an w of 100 hours, the maximum wait is roughly
100 hours in all months.

For p=10.9, shown in Fig. 2b, a maximum wait of
50 hours cannot be achieved for most months even if
w = 50 hours, but a maximum wait of roughly 100 hours is
achievable each month by using w = 100 hours. However,
increasing w to 300 hours results in a maximum wait of
300 hours in all but two months. On the other hand, as
shown in Fig. 2c, the average bounded slowdown can be
improved when the maximum wait degrades as a result of
a larger w, but the improvement is typically small (except
for July 2003 and August 2003).

Obviously, the maximum wait cannot be arbitrarily
reduced by using a small wait time threshold. For
example, under p=0.9 (in Fig. 2b), the maximum wait
using w = 50 hours is worse than or similar to that of using
w = 100 hours in most months (except October 2003). In
fact, too small a threshold can cause poor maximum wait.
In the extreme case, where w = 0, the maximum wait is as
poor as thousands of hours in several months (not shown

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1650

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL. 19, NO. 12, DECEMBER 2008

% @ =300h #* ©=300h % ©=300h
o ©=100h & ©=100h o ©=100h
X ©=50h % ©=50h x ©=50h
I c
400 400 £ 100
el
E3000 % % ® E3000 A-deoge-de- g E *.g
= A N = o Y w SR
200 / x N N g 200 ¥ E A 3o om0]
x ;X ;o * < ; B 2 x
R e 8100 g8 g™ Toug 2 N e
x E vl v xX Q b ‘8\.__‘_,,:.-*..3 %~
(=2
88888883859 8888888 ¢g¢o o 88388888 ¢s¢ o

12
1
2
3
6
7
8
9

1

Fig. 2. Sensitivity of Strict Lexical(T% — avgX) to fixed wait time thresholds (w); L = 1,000. (a) Maximum wait; p = original load. (b) Maximum wait;

p = 0.9. (c) Average bounded slowdown; p = 0.9.

to conserve space). This is because minimizing 7 using
w=0 is equivalent to minimizing the total wait time,
which is the same as minimizing the average wait.

The key point is that the value of w has a significant
impact on the maximum wait; using too small or too large a
wait time threshold is detrimental to the performance. The
results motivate the use of a dynamic threshold. In the
remainder of this paper, we assume that the excessive wait
is computed using the dynamic threshold, as defined in
Section 3.1.

5.2 Efficiency of Search Algorithms
Since it is computationally infeasible to fully explore the
potentially large search space, an efficient search algorithm
is critical to the goal-oriented policies. An algorithm is said
to be more efficient than another if it is faster in finding good
solutions with respect to the given objectives. As discussed
in Section 3.4, four search algorithms are studied: DDS-LXF,
DDS-FCFS, LDS-LXF, and LDS-FCFS. The question is which
one is the most efficient algorithm for the problem studied.
To answer the question, we could compare the number
of tree nodes visited (i.e., L) required for each search
algorithm to approximate the “true” performance of each
policy for each month; the algorithm that requires the
smallest L would be the most efficient. The dilemma is that
to know the true performance, we need to explore all
possible schedules at each scheduling decision point, which
is computationally infeasible. As an alternative, we project
the true performance of each policy. Our approach is to
examine how the performance of each policy using each
search algorithm changes as L increases, up to a certain
point that is still computationally feasible to simulate. We
then compare the results of different search algorithms for

each policy, to project where their performance converges.
Finally, we compare how fast each algorithm approaches
the projected performance convergence point.

We simulate L in the range of 100 and 64,000, unless
noted otherwise. Note that in most scheduling decision
points for p = 0.9, at least 10 jobs are waiting, i.e., almost
10 million nodes in the tree (Fig. 1d). This range of L does
not even cover 1 percent of the tree in most cases. Thus, it
is critical to explore good schedules early in time.

The execution time at each scheduling decision increases
roughly linearly with L and, to a less extent, the number of
waiting jobs. In our simulation, it typically takes under a
few tens of milliseconds for L = 1,000 — 8,000 in a tree of
30 jobs, larger than the trees used in 70 percent of the
scheduling decision points for p = 0.9. Our simulator is
written in Java PL and run on a 2-GHz Intel Pentium-IV
Windows XP with 512-Mbyte memory.

Below, we report the results of Strict Lexical(T,, — avgX)
and Strict Lexical(mazW — avgX). Other policies will be
commented. The results of Strict Lexical(T,, — avgX) are
shown for a typical month (September 2003) in Fig. 3 and
for the most exceptional month (January 2004) in Fig. 4. For
simplicity, only three algorithms are shown: DDS-FCES,
DDS-LXF, and LDS-LXF. We plot their average bounded
slowdown, maximum wait, and total normalized excessive
wait, as a function of L.

As shown in both Figs. 3 and 4, the performance
difference among different algorithms roughly reduces as
L increases. In the typical month, the three algorithms
almost converge at L =64,000. In addition, DDS-LXF
quickly (400 < L <1,000) approaches the convergence
point for all relevant performance measures. On the other
hand, it takes a much larger L for LDS-LXF to improve the

-B-DDS-fcfs -8-DDS-fcfs! -B-DDS-fcfs
¥ LDS-Ixf & LDS-Ixf = LDS-Ixf
-*-DDS-Ixf -¢DDS-Ixf -¢DDS-Ixf
c [
£80 - .
8 'Fl‘ _ gg/1000
Ze0 w £ R
& o K- R = = .
B0 R g Eo 500
=R -3 iy % L2 R
320 PV v £ 20 z8 Y g
= X e
goéoookixxik Ogoggxx:cxxx ® Vs s cevyvy oy
2 RS- V¥ ®oF EER - T @© 3 SREL-I¥TPLF
nodes limit (L) # nodes limit (L) # nodes limit (L)

(a)

(c)

(b)

Fig. 3. Comparing search efficiency for Strict Lexical(T,, — avgX); a typical month (September 2003); p = 0.9. (a) Average bounded X versus L.

i i 98%W
(b) Maximum wait versus L. (c) Total E{iig., versus L.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

1651

-B-DDS-fcfs -8-DDS-fcfs -B-DDS-fcfs
7 LDS-Ixf 7 LDS-Ixf 7 LDS-Ixf
% DDS-Ixf -¢DDS-Ixf -DDS-Ixf

n
o
S
S

total normalized
excessive wait (hr)
=
o
o

g
3 O 90 9 X ¥ ¥ X X ¥ S O 0O 09X ¥ ¥ X X XS
nodes limit (L) # nodes limit (L)

(@)

(b)

o

Fig. 4. Comparing search efficiency for Strict Lexical(T,, — avgX); the most exceptional month (January 2004); p = 0.9. (a) Average bounded X

versus L. (b) Maximum wait versus L. (c) Total Epecll . versus L.
maximum wait and total normalized excessive wait
(Figs. 3b and 3c) and for DDS-FCFS to improve the average
bounded slowdown (Fig. 3a). An even larger L is needed
for LDS-FCFS (not shown) to improve the average slow-
down than that for DDS-FCFS. The exceptional month is
different in that it takes a much larger L to reduce the
performance gap of the algorithms, due to a larger backlog
(and thus a larger search space) in that month. Thus, for this
month, we simulate L up to 1 million.

Based on the above results, DDS-LXF appears to be more
efficient than the other three search algorithms studied for
Strict Lexical(T,, — avgX). We found this to be the case for
most policies studied, except Lexical(mazW — avgX) and
Lexical(mazW — avgW), which minimize mazW as the
primary objective. These two policies are discussed
next, followed by more discussions of comparing search
algorithms.

For Lexical(mazW— avgX) and Lexical(mazW — avgW),
DDS-LXEF still appears to be the most efficient algorithm for
most months studied. However, it is questionable whether
this is true for several months, especially January and
February 2004. Fig. 5 shows the results of Strict Lexical
(mazW — avgX) in January 2004, in which the performance
difference among the search algorithms is the largest. As
shown in Figs. 5a and 5b, even at L = 64,000, DDS-FCFS and
DDS-LXF still have very different performance, in that DDS-
LXF favors the average bounded slowdown and DDS-FCFS
favors the maximum wait, as expected.

Increasing L to 1 million sufficiently improves the average
bounded slowdown of DDS-FCFS, but DDS-LXF still has over
60 percent worse maximum wait than that of DDS-FCFS.
Using LDS-LXEF is even less efficient than using DDS-LXF in
reducing the maximum wait, but their difference is not as
large as that for Strict Lexical(T,, — avgX). The results of the

total normalized excessive wait in Fig. 5c are similar to that of
the maximum wait. Thus, for January 2004 and February 2004
(not shown), and perhaps a few other months, the perfor-
mance of using DDS-FCFS may be the closest to the true
performance of Strict Lexical(mazW — avgX), for the range
of L studied.

The results in this section suggest that DDS is more
efficient than LDS for the problem studied, as expected and
discussed in Section 2.4. Second, the results of Lexical(T,, —
avgX) suggest that it is easier to achieve low T,, by closely
following the LXF priority than to achieve low avgX by
closely following the FCFS priority, and that the LXF
branching heuristic is more efficient than FCFS for the
objective studied. Third, the LXF priority is more consistent
with minimizing 7T}, than with minimizing maxW. These two
starvation measures will be further compared in Section 6.

Although using DDS-LXF with a limited L may favor
the slowdown measure to some extent, this should be
acceptable since low average job slowdown is typically
important. The only exceptions are policies whose
primary objectives are in strong conflict with optimizing
the average slowdown, e.g., Lexical(mazW — avgX). In
these cases, a branching heuristic favoring the primary
objective can be used.

Finally, we comment on the effect of L. In most cases
where DDS-LXF is more efficient than others, we find that a
small L between 400 and 1,000 results in a fairly similar
performance to that of using a larger L up to 64,000, in
terms of the maximum wait, average wait, and the average
bounded slowdown. For the purpose of comparing policies
in the remainder of this paper, we show the results of using
L =4,000 (unless otherwise noted). This size is large
enough to show potential advantages or problems of the
policies, yet small enough for practical implementation to

-8-DDS-fcfs -8-DDS-fcfs -8-DDS-fcfs
¥ LDS-Ixf ¥ LDS-Ixf 7 LDS-Ixf
--DDS-Ixf -DDS-Ixf -*DDS-Ixf
=
2100 — — " : = 1500
g P - BE
s = N
S E--g"n A meR < 5 S 1000
E 50 " o “l:I g B85 g-m.g-8--m-0- &--8 g E
5 s 50 ; @ 500
<) T ZgiPE. o T £ =8
S v gV sg
2 0 0 0
“ 'sgggrEiEsy: sgggex¥Egy:

nodes limit (L)

(@)

nodes limit (L)

(b)

Fig. 5. Comparing search efficiency for Strict Lexical(mazW — avgX); January 2004 (the largest performance gap); p = 0.9. (a) Average bounded

i i mazW
X versus L. (b) Maximum wait versus L. (c) Total EZSEg, versus L.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1652

O FCFS-backfill © FCFS-backfill
A L XF-backfill A |XF-backfill
&Lexical(Tw— avgX) -B-Strict Lexical(Tw — avgX)
E
z s<Tradeoff(Tw : avgX) “Lexical(Tw— avgX)
2150 ‘
8 0.0 O
£100 o (]
@] ko) o,
° 50 -
3
8 0
=4
©

Fig. 6. Strict versus relaxed Lexical(T,, — avgX); p=0.9; L = 4,000.
(a) Average bounded X. (b) Maximum wait.

represent the performance that can be achieved on real
systems.

5.3 Strict versus Relaxed Difference

So far, we have assumed that the strict difference is used
when comparing candidate schedules. However, a relaxed
difference with a small slack may be preferred, to avoid
emphasizing too much on marginal differences between
schedules compared. In this section, we evaluate the impact
of using the relaxed difference with 1 percent slack. Results
are shown for Lexical(T, — avgX) and Lexical(mazW —
avgX) in Figs. 6 and 7. Other policies will be commented.
Recall that “Strict” is part of the policy names if the strict
difference is used; otherwise, the relaxed difference is
assumed.

Figs. 6a and 6b plot the average bounded slowdown and
maximum wait of Strict and Relaxed Lexical(T,, — avgX)
for each month. The two baseline backfill policies are also
included. The results show that the two Lexical policies
have similar performance, except that using relaxed
differences considerably improves the average bounded
slowdown in July 2003.

In contrast, using the relaxed difference has a much
larger impact on Lexical(mazW — avgX), because mini-
mizing maxW does not leave as much space for optimizing
the secondary objective. In particular, the effect of the
relaxed difference is the largest for January 2004, which is
the month that has the largest performance gap among
different search algorithms when the strict difference is
used, as discussed in Section 5.2. Figs. 7a and 7b plot the
average bounded slowdown and maximum wait versus L
of three versions of Lexical(mazW — avgX): Strict version
with DDS-FCEFS (repeated from Fig. 5), relaxed version with
DDS-ECEFS, and relaxed version with DDS-LXF.

O FCFS-backfill

A LXF-backfill
-A-Tradeoff(Tw : avgX)
¥ B-Tradeoff(Tw : avgX)
-B-C-Tradeoff(Tw : avgX)

O FCFS-backfill

A LXF-backfill

- A-Tradeoff(Tw : avgX)
¥ B-Tradeoff(Tw : avgX)
[=C-Tradeoff(Tw : avgX)

max wait (hr)
avg bounded
slowdown

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

-&-Strict, DDS—fcfs
O Relaxed, DDS—fcfs

-&-Strict, DDS—fcfs
©O Relaxed, DDS-fcfs

s “+Relaxed, DDS-Ixf “+Relaxed, DDS-Ixf
8100 a. 150

g o L £ W—H—x——*”‘
@ E__g,;: 0‘779“5"’ a8 =100

g 50 o Y0.§ z _8-0.9.0.8:0.9:0.0-9
S o % 50!

g2, N—»/*—W £ ,

e 'sgggri¥xzy 8gggruvsEy

nodes limit (L) # nodes limit (L)

z

(b)

Fig. 7. Strict versus relaxed Lexical(mazW — avgX); p=0.9;
January 2004. (a) Average bounded X versus L. (b) Maximum
wait versus L.

Fig. 7a shows that using relaxed differences significantly
improves the average bounded slowdown of DDS-FCFS for
L > 16,000. In addition, both DDS-FCFS and DDS-LXF have
comparable average bounded slowdown at L = 64,000, now
that relaxed differences are used. At the same time, using
the relaxed difference does not affect the maximum wait
much, as shown in Fig. 7b (and total normalized excessive
wait measures, not shown). Thus, using relaxed differences,
DDS-FCEFS is even more efficient than DDS-LXF to achieve
Lexical(mazW — avgX) for January 2004. On the other
hand, in most of the other months, the effect of relaxed
differences is considerably smaller and that DDS-LXF is still
more efficient for this policy.

Finally, for Eq-Tradeoff policies, using relaxed differ-
ences may improve or degrade measures used in both
objectives, but we found more improvement than degrada-
tion. Based on these results, the relaxed difference is
adopted in the models.

5.4 Definition of Reference Values in the
Eg-Tradeoff Model

In this section, we compare three versions (A, B, and C) of

reference values for the Eq-Tradeoff model. As discussed in

Section 3.2, version A is more intuitive, but versions B and

C are more theoretically attractive because of their unique-

ness property (if strict differences are used).

Fig. 8 shows the results for Tradeoff(T), : avgX), using
the DDS-LXF search algorithm with L =4,000 and the
relaxed difference. Fig. 8a shows that the three versions of
Tradeoff(7), : avgX) have almost identical maximum wait
each month. They also have similar average wait and total
normalized excessive wait times (not shown). In fact, as
shown in Fig. 8b, they also have fairly similar average
bounded slowdown in each month, except August 2003. On
the other hand, Fig. 8c shows that their maximum bounded

© FCFS-backfill

A LXF-backfill
*A-Tradeoff(Tw : avgX)
¥ B-Tradeoff(Tw : avgX)
-B-C-Tradeoff(Tw : avgX)

0000000900000

O FCFS-backfill

A LXF-backfill
-*A-Tradeoff(Tw : avgX)
¥ B-Tradeoff(Tw : avgX)
-8 C—Tradeoff(Tw : avgX)

N2
o o
o 9 9
S S o

o
o
it o
»
(]

slowdown

max bounded
slowdown
max bounded

Fig. 8. Comparing three versions of Tradeoff(T,, — avgX); p = 0.9; graphs (a)-(c): L = 4,000; graph (d): August 2003 (exceptional). (a) Maximum
wait. (b) Average bounded slowdown. (c) Maximum bounded slowdown. (d) Maximum bounded slowdown versus L.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

&Lexical(maxW — avgX)
W Lexical(Tw— avgW)
s¢Lexical(Tw— avgX)

&Lexical(maxW — avgX)
W Lexical(Tw— avgW)
“Lexical(Tw— avgX)

N A O ®
S o o o

o

{
avg bounded slowdown

MM MMM O®OST T
83833888833 8883888338
KR oSS A - & TN BSOSO ~A~—-A B

1653

&Lexical(maxW — avgX)
¥ Lexical(Tw— avgW)
seLexical(Tw— avgX)

-B-Lexical(maxW — avgX)
v Lexical(Tw— avgW)
“*Lexical(Tw — avgX)

total normalized
excessive wait (hr)

#job w/ excessive wait

Fig. 9. Impact of alternative objectives using the Lexical model; p = 0.9; L = 64,000. (a) Maximum wait. (b) Average bounded X. (c) Number of jobs

i 98% W 98% W
with EQcpg; > 0. (d) Total Epcfg.,,.

slowdown performance differs in more than one month, in
that version A outperforms the other two versions in three
months (June 2003, August 2003, and January 2004). A
problem of versions B and C is that their maximum
bounded slowdown fluctuates with L more than that of A
in these three months and a few other months. The worst
case occurs in August 2003, shown in Fig. 8d, which plots
the maximum bounded slowdown versus L under each
policy in that month. In other months, the maximum
bounded slowdown of B and C does not fluctuate with L as
much, relative to the difference between them and FCFS-
backfill.

Since version A is more robust in the maximum
bounded slowdown performance and is also more in-
tuitive, it is adopted to define the reference values used in
the Eq-Tradeoff model.

6 PoLicy COMPARISONS

In Section 5, we have made several choices for designing
and implementing the goal-oriented policies. They are the
dynamic threshold for computing the excessive wait, the
DDS-LXF search algorithm for all policies except
Lexical(mazW — avgX) and Lexical(mazW — avgW), the
relaxed difference with 1 percent slack, and the A-
Tradeoff model for modeling equal trade-offs. Now, we
are ready to compare the performance of alternative goal-
oriented policies. All of them are designed with the same
two performance goals in mind, i.e., preventing starvation
and favoring shorter jobs, but they differ in the measures
optimized and/or objective models used. Our purpose is
to understand the performance impact of alternative
objectives and measures and help define appropriate
objectives.

We evaluate alternative objectives using the Lexical
model in Section 6.1 and the Eqg-Tradeoff model in
Section 6.2. They will be compared with the backfill policies
in Section 6.3. Most results are fairly intuitive, except when
making an equal trade-off between maxW and average
performance measures.

6.1 Alternative Lexical Policies

In this section, we compare alternative Lexical policies,
including alternative starvation measures, alternative aver-
age performance measures, and alternative orders of
measures.

Fig. 9 compares three policies: Lexical(mazW — avgX),
Lexical(T,, — avgW), and Lexical(T, — avgX). Note that
Lexical(mazW — avgX) uses the DDS-FCEFS algorithm, but
the other policies use DDS-LXF, based on the discussions in

Sections 5.2 and 5.3. Since Lexical(mazW — avgX) requires
a large L to reduce the average bounded slowdown, the
results are shown for L = 64,000, the largest L simulated for
most months.

Figs. 9a and 9b plot the maximum wait and average
bounded slowdown, respectively, for each policy. Fig. 9c
plots the number of relatively long waiting jobs (> the
ninety-eighth percentile wait under FCFS-backfill, typically
30-50 hours) in each month. Fig. 9d plots total normalized
excessive wait of these jobs.

First, for Lexical(mazW — avgX) and Lexical(T, —
avgX), which differ only in the starvation measure used,
Fig. 9a shows that Lexical(mazW — avgX) achieves
considerably lower maximum wait in several months
(December 2003, January 2004, and February 2004).
However, it has worse average bounded slowdown for
many months, as shown in Fig. 9b. Furthermore, as a
result of minimizing the maximum wait, more jobs under
Lexical(mazW — avgX) incur a relatively long wait time
than under Lexical(T},, — avgX) in most months, as shown
in Fig. 9c. Note that this is still true if Lexical(mazW —
avgX) uses the other three search algorithms. On the
other hand, Fig. 9d shows that these two policies have
similar total normalized excessive wait time (w.r.t. the
ninety-eighth percentile wait under FCFS-backfill) for
most months (except December 2003 and March 2004).
The results in Figs. 9c and 9d imply that relatively long-
waiting jobs under Lexical(mazW — avgX) in fact incur a
shorter wait time in average than that under Lexical(T,, —
avgX) for most months.

The bottom line is if minimizing the maximum wait is
the most important objective, Lexical(mazW — avgX)
would be a better policy. However, most likely, minimiz-
ing the average slowdown is just as important, in which
case Lexical(T,, — avgX) is preferable, if the Lexical
model is used.

Regarding the impact of alternative average performance
measures, we can see that, by comparing Lexical(T,, — avgX)
and Lexical(T,, — avgW), whether avgW or avgX is optimized
in the secondary objective makes only minimal difference in
the performance. On the other hand, if the primary objective
optimizes avgW or avgX, then there is a starvation problem,
in that the maximum wait in some months is even over
1,000 hours (not shown to conserve space).

6.2 Alternative Eq-Tradeoff Policies

In this section, we study the impact of using alternative
measures on the performance of Eq-Tradeoff policies. The
results are shown in Figs. 10a, 10b, 10c, and 10d, which

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1654

= Tradeoff(maxW : avgX)
'« Tradeoff(Tw : avgW)
*Tradeoff(Tw : avgX)

-=-Tradeoff(maxW : avgX)
v Tradeoff(Tw : avgW)
-~ Tradeoff(Tw : avgX)

£600 iy £

5400 8 g

. Y o

5200 "B"E' i o 3
0 o B se o T BSo TSP SO T (" "
ER®S o= Sl

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

-2-Tradeoff(maxW : avgX)
v Tradeoff(Tw : avgW)
“Tradeoff(Tw : avgX)

& Tradeoff(maxW : avgX)
¥ Tradeoff(Tw : avgW)
- Tradeoff(Tw : avgX)

o

000

N A O
o o

o

6l
4000
2000

avg bounded slowdown
max bounded slowdown

Fig. 10. Impact of alternative objectives using the Eg-Tradeoff model; p = 0.9; L = 4,000. (a) Maximum wait. (b) Average wait. (c) Average bounded

slowdown. (d) Maximum bounded slowdown.

plot the average and maximum bounded slowdown and
wait time of three policies: Tradeoff(mazW : avg),
Tradeoff (T, : avgW), and Tradeoff(T,, : avgX), using ver-
sion A of reference values and the DDS-LXF search with
L = 4,000.

First, we see that whether avgX or avgW is optimized
makes a larger difference now than when they are used as
the secondary objective in Lexical policies. More specifi-
cally, as shown in Figs. 10c and 10d, Tradeoff(T), : avgX)
has significantly lower average bounded slowdown in a few
months and maximum bounded slowdown in most
months, compared with Tradeoff(T,, : avgW). The results
are similar for the range of L studied. The performance of
these two Eq-Tradeoff policies are otherwise fairly similar,
e.g., maximum and average wait, as shown in Figs. 10a and
10b. Thus, to favor shorter jobs, optimizing avgX may be
preferred.

Second, as shown in Fig. 10a, Tradeoff(mazW : avgX)
has a starvation problem (400-1500 hours of maximum wait
time in several months). The same problem also happens to
Tradeoff (mazW : avgW) (not shown). This is surprising as
minimizing mazW is in the objectives. Note that the
problem occurs for all implementations studied, including
different search algorithms, definitions of differences,
values of L (up to 64,000), and versions of reference values.

To investigate the problem, we simulate another policy,
which is similar to Tradeoff(mazW : avgX) but uses the
maximum excessive wait in place of the maximum wait. We
found that this policy has a similar starvation problem (not
shown). Note that the maximum wait or maximum
excessive wait measures the performance of a single job,
but the average wait and slowdown or total excessive wait
are alljob measures. The results suggest that making an
equal trade-off between single-job and alljob measures is
problematic.

O FCFS-backfill
A LXF-backfill
-B-Lexical(Tw— avgX)

O FCFS-backfill
A LXF-backfill
& Lexical(Tw— avgX)

“Tradeoff(Tw : avgX) = “Tradeoff(Tw : avgX)
=200 BE
£20 &
= ©
€100 g
2 S
: <
E 0 §

An important lesson is that optimizing measures that
seem similar (i.e,, mazW and T,) may result in very
different performance; care should be taken when design-
ing objectives. In addition, T}, is a better starvation measure
than maxW, because there is a problem of using maxzW and
also that minimizing maxW may be too strict an objective
for the purpose of preventing starvation.

6.3 Further Comparisons of Policies

We now compare the performance of the best Lexical and
Eqg-Tradeoff policies studied (i.e., optimizing T, and avgX)
and also compare their performance with the backfill
policies.

Figs. 11a, 11b, 11c, and 11d plot the maximum wait, the
total normalized excessive wait, and the average and
maximum bounded slowdown of each policy in each
month. First, as expected, there is a large performance
difference between the two baseline backfill policies, in that
FCFS-backfill favors the maximum wait and total normal-
ized excessive wait, but LXF-backfill favors the slowdown
measures and the average wait (not shown). In contrast, by
simultaneously optimizing T,, and avgX through search,
Tradeoff(T, : avgX) outperforms both backfill policies for
all performance measures studied. Lexical(T,, — avgX) is
fairly similar to Tradeoff(7), : avgX), except it has much
worse maximum bounded slowdown, which is nevertheless
still much better than that of FCFS-backfill in most months.

To further understand the characteristics of each policy,
Fig. 12 plots the average wait time of each NV x T job class
under each policy, for a representative month (July 2003).
Jobs are partitioned according to five disjoint ranges of
actual job runtime (T") and five disjoint ranges of requested
nodes (N). The upper bounds of each range of 7" and N are
shown in the graphs. These results demonstrate a trend
observed in most months: 1) FCFS-backfill tends to provide
poor performance for wide jobs (N > 32), regardless of

Z B(ggsgbakcfmﬁu © FCFS-backfil
—backfi A LXF-backfill
&-Lexical(Tw — avgX) - -&Lexical(Tw— avgX)
[*Tradeoff(Tw : avgX) 3 *Tradeoff(Tw : avgX)
150 : $6000 - ————
oo o |3 o
100 - N O £o) g 4000 b O,VEI ’ ,~° g,o
22000, U004 AN
S Apnt R |'&~ﬂ/3\a

avg bounded slowdown

Fig. 11. Comparing goal-oriented policies and backfill policies; p = 0.9; L = 4,000. (a) Maximum wait. (b) Total EZaz, .. (c) Average bounded

slowdown. (d) Maximum bounded slowdown.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

CHIANG AND VASUPONGAYYA: DESIGN AND POTENTIAL PERFORMANCE OF GOAL-ORIENTED JOB SCHEDULING POLICIES FOR...

S 40/
g 40
5201
>
12n [12h
‘ ‘3;64128) ‘ 128
8 range of T 10m 1 8

range of T fom = range of N

(a) (b)

range of N

1655

128

range of T 10m 1

range of N

(c) (d)

Fig. 12. Average wait time of each job class (T x) in a representative month (July 2003); p = 0.9; graphs (c) and (d): L = 4,000. (a) FCFS-backsfill.

(b) LXF-backfill. (c) Lexical(T,, — avgX). (d) Tradeoff(T,, : avgX).

their runtime; 2) LXF-backfill significantly improves short-
wide jobs (T' < 1 hour and N > 32) by sacrificing long-wide
jobs (T" > 8 hours and N > 8), compared with FCFS-backfill;
3) in contrast to LXF-backfill, both goal-oriented policies,
and especially Tradeoff(7T,, : avgX), improve short-wide
jobs of FCFS-backfill, but not so much as to sacrifice long-
wide jobs. In fact, the performance of the short-wide jobs
under Tradeoff(T,, : avgX) is as good as that under LXF-
backfill. To achieve such performance, Tradeoff(T, : avgX)
trades some of the performance of long-narrow jobs
(T > 8 hours and N < 8), which could have taken advan-
tage of the backfilling mechanism (because they are narrow)
under backfill policies.

The key conclusion is that goal-oriented policies can
achieve a low average wait and slowdown as good as that
of LXF-backfill, while having a low maximum wait similar
to that of FCFS-backfill for most months studied.

7 SUMMARY AND CONCLUSIONS

To deal with multiple performance goals, current job
scheduling policies that run on production parallel
computers use many parameters for defining job priority
and/or various scheduling limits. Providing many para-
meters may seem flexible, but determining their values is
difficult. Rather than requiring tuning low-level schedul-
ing parameters, we propose goal-oriented scheduling
policies, which allow system administrators to specify
only the high-level scheduling performance goals. As can
see seen, using such policies places the burden on the
policy designers rather than the system administrators.
We investigate several design and implementation choices
and evaluate the potential performance of the goal-
oriented policies. Search algorithms are used to auto-
matically find the schedule that provides the best
compromise at each scheduling decision point, according
to the given objectives.

A key component of goal-oriented policies is the multi-
objective models, which should be intuitive and require no
manual tuning of low-level parameters. Furthermore, they
should be designed such that the schedulers can auto-
matically and efficiently optimize for the given objectives.
Under these considerations, we define two models: 1) the
Lexical model, based on the previous lexicographical
ordering approach, which is simple but requires that the
objectives be ranked in their importance, and 2) the Eq-
Tradeoff model, proposed in this study to model objectives
that are equally important. Three versions (A, B, and C) of

the Eq-Tradeoff model are studied. We find that they have
fairly similar performance for the workloads and objectives
studied. We adopt version A because it is simple and more
intuitive than the others.

We focus on two scheduling performance requirements,
commonly placed on general-purpose parallel computer
systems: preventing starvation and favoring shorter jobs. To
prevent starvation, we consider optimizing the total
excessive wait (7},) or maximum wait time (maxzW). To
favor shorter jobs, we consider optimizing the average
slowdown (avgX) or average wait time (avgWW). Using these
objectives and the two objective models, a set of goal-
oriented policies is defined. We study these policies to
understand the impact of alternative objective models and
alternative objectives, with respect to the two performance
requirements considered.

We compare goal-oriented policies with FCFS-backfill
and LXF-backfill, which represent the two extremes of
backfill policies in that FCFS-backfill favors the maximum
wait and LXF-backfill favors the average wait and slow-
down. Policies are evaluated by simulation using job traces
from three parallel computer systems. The results are
reported for the 10 monthly NCSA /IA-64 workloads. The
conclusions of using two SP2 traces are qualitatively
similar. Both original-load and artificially created high-load
(p=0.9) workloads are studied. A wide range of policy
performance measures was used, including average perfor-
mance measures, the maximum wait, and two total normal-
ized excessive wait time measures.

Our results show that goal-oriented policies have the
potential to significantly improve backfill policies. More
specifically, Tradeoff(T, : avgX), which simultaneously
optimizes T, and avgX, achieves the best or close to the
best average performance measures as well as the max-
imum wait and total normalized excessive wait for the
workloads studied. The performance of Lexical(T,, — avgX)
is similar except for a worse maximum bounded slowdown,
because optimizing avgX is the secondary objective.
Second, T, is a better starvation measure than mazW.
One reason is that optimizing 7, as the primary objective,
leaves more room for optimizing other measures. Even
more importantly, when simultaneously optimizing mazW
and average performance measures, a starvation problem
occurs. The results suggest that making an equal trade-off
between single-job (mazW) and all-job (avgX,avgW)
measures is problematic. Other results are fairly intuitive:
optimizing avgX can achieve better average and maximum
bounded slowdown than that of optimizing avgWW, when

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

1656

used in the Eq-Tradeoff model; optimizing average perfor-
mance measure as the primary objective results in a
starvation problem.

For the search algorithms, the tree traversing algorithms
(DDS and LDS) as well as the branching heuristics (LXF and
FCFS) have a significant impact on the search efficiency. For
the multiobjective scheduling problem studied, DDS-LXF
appears to be more efficient than the other three algorithms
studied for the policies studied, except it is DDS-FCFS for
Lexical(maxzW — avgX) and Lexical(mazW — avgW).

Allowing specifying high-level performance goals and
automatically optimizing the performance through search
not only reduces the administrator effort and error but also
has the potential to improve the scheduling performance. The
work reported here represents a strong step in that direction.
Our ongoing work includes further improving the efficiency
of search, studying the performance impact of inaccurate job
runtime estimates, and studying other important perfor-
mance goals, including fair share and special priority.

ACKNOWLEDGMENTS

The work of Sangsuree Vasupongayya was done while she
was studying at Portland State University.

REFERENCES

[1] OpenPBS, http://www.openpbs.org/docs.html, Aug. 2000.

[2] LSF Scheduler, Platform Computing, http:/ /www.platform.com/,
2008.

[3] Maui Scheduler, http://www.supercluster.org/maui/, 2008.

[4] B. Chun and D. Culler, “User-Centric Performance Analysis of
Market-Based Cluster Batch Schedulers,” Proc. Second IEEE Int’l
Symp. Cluster Computing and the Grid (CCGRID '02), pp. 30-38, May
2002.

[5] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Weglarz,
“Scheduling Jobs on the Grid-Multicriteria Approach,” Computa-
tional Methods in Science and Technology, vol. 12, no. 2, pp. 123-138,
2006.

[6] Parallel Workloads Archive, http:/ /www.cs.huji.ac.il/labs/
parallel /workload /models.html, 2008.

[7]1 S. Vasupongayya, S.-H. Chiang, and B. Massey, “Search-Based Job
Scheduling for Parallel Computer Workloads,” Proc. IEEE Int’l
Conf. Cluster Computing (CLUSTER ’05), Sept. 2005.

[8] S. Vasupongayya and S.-H. Chiang, “Multi-Objective Models for
Scheduling Jobs on Parallel Computer System,” Proc. IEEE Int’l
Conf. Cluster Computing (CLUSTER ’06), short paper, Sept. 2006.

[9] D. Lifka, “The ANL/IBM SP Scheduling System,” Proc. First Job

Scheduling Strategies for Parallel Processing (JSSPP '95), Apr. 1995.

S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J.F. Skovira,

Workload Management with Loadleveler, IBM, Nov. 2001.

D. Zotkin and P.J. Keleher, “Job-Length Estimation and Perfor-

mance in Backfilling Schedulers,” Proc. Eighth IEEE Int'l Symp.

High Performance Distributed Computing (HPDC '99), pp. 236-243,

Aug. 1999.

S.-H. Chiang and M.K. Vernon, “Production Job Scheduling for

Parallel Shared Memory Systems,” Proc. 15th IEEE Int’l Parallel and

Distributed Processing Symp. (IPDPS "01), Apr. 2001.

S.-H. Chiang, A. Dusseau-Arpaci, and M.K. Vernon, “The Impact

of More Accurate Requested Runtimes on Production Job

Scheduling Performance,” Proc. Eighth Job Scheduling Strategies

for Parallel Processing (JSSPP '02), pp. 103-127, July 2002.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan,

“Selective Reservation Strategies for Backfill Job Scheduling,”

Proc. Eighth Job Scheduling Strategies for Parallel Processing

(JSSPP '02), pp. 55-71, July 2002.

AW. Mu’alem and D.G. Feitelson, “Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the IBM

SP2 with Backfilling,” IEEE Trans. Parallel and Distributed Systems,

vol. 12, no. 6, pp. 529-543, June 2001.

(10]

(1]

[12]

[13]

[14]

[15]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 12, DECEMBER 2008

[16] S.-H. Chiang and C. Fu, “Re-Evaluating Reservation Policies for
Backfill Scheduling on Parallel Systems,” Proc. 16th IASTED Int’l
Conf. Parallel and Distributed Computing and Systems (PDCS '04),
Nov. 2004.

D. Talby and D.G. Feitelson, “Improving and Stabilizing Parallel
Computer Performance Using Adaptive Backfilling,” Proc. 19th
IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS '05),
Apr. 2005.

B. Lawson and E. Smirni, “Self-Adaptive Scheduler Parameteriza-
tion via Online Simulation,” Proc. 19th IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS "05), Apr. 2005.

M. Ehrgott and X. Gandibleux, “A Survey and Annotated
Bibliography of Multiobjective Combinatorial Optimization,”
OR Spektrum, vol. 22, pp. 425-460, 2000.

J.M. Crawford, “Solving Satisfiability Problems Using a Combina-
tion of Systematic and Local Search,” Second DIMACS Challenge:
Cliques, Coloring, and Satisfiability, Oct. 1993.

W.D. Harvey and M.L. Ginsberg, “Limited Discrepancy Search,”
Proc. 14th Int’l Joint Conf. Artificial Intelligence (IJCAI '95), Aug. 1995.
R.E. Korf, “Improved Limited Discrepancy Search,” Proc. 13th
Nat’'l Conf. Artificial Intelligence (AAAI '96), pp. 209-215, Aug. 1996.
T. Walsh, “Depth-Bounded Discrepancy Search,” Proc. 15th Int'l
Joint Conf. Artificial Intelligence (IJCAI '97), vol. 2, pp. 1388-1393,
Aug. 1997.

R. Gangadharan and C. Rajendran, “A Simulated Heuristic for
Scheduling in a Flowshop with Bicriteria,” Computers and
Industrial Eng., vol. 27, nos. 1-4, pp. 473-476, 1994.

(171

(18]

(19]

(20]

[21]
[22]

(23]

[24]

Su-Hui Chiang received the BS and MS
degrees in applied mathematics from the
National Chung-Hsing University, Taichung,
Taiwan, R.O.C., and the MS and PhD degrees
in computer science from the University of
Wisconsin, Madison. She is an assistant
professor in the Department of Computer
Science, Portland State University, Portland,
Oregon. Her research interests include perfor-
mance analysis and modeling, and job sche-
duling for parallel and distributed systems.

Sangsuree Vasupongayya received the BEng
degree from the Prince of Songkla University,
Songkla, Thailand, in 1996, the MSc degree
from California State University, Chico, in 2001,
and the PhD degree in computer science from
Portland State University, Portland, Oregon, in
2008. She is a lecturer in the Department of
Computer Engineering, Prince of Songkla Uni-
versity. Her research interests include schedul-
ing jobs in parallel computer environment and

computer security.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Prince of Songkla University. Downloaded on November 24, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

