
Enhancing the Taverna Workflow System for

Executing and Analyzing the Performance of

Image Processing Algorithms

Sureerat Kaewkeeree
1
 and Pichaya Tandayya

2

Department of Computer Engineering,

Faculty of Engineering, Prince of Songkla University,

Hat Yai, Songkhla, Thailand

5210120104@email.psu.ac.th
1
, pichaya@coe.psu.ac.th

2

Abstract—In image processing, different groups of sub-

algorithms give similar outputs. Therefore, there are more than

one solution to process an image for a specified result. This

research uses Taverna Workbench, a workflow technology, to

help the developer in designing and checking the performance of

algorithm sets more easily. We propose our integrated web

service operation working with the Taverna workflow editor.

Currently, the tool supports the image processing function based

on our case study, PSU’s cell image analyzer. Experiments show

that using the workflow tool can help reducing the design time

and the user can easily obtain the results and make decision

about which algorithm sets to be used.

Keywords-component; workflow; web service; image

processing;

I. INTRODUCTION

Traditionally, in most scientific processes, to obtain the
satisfactory results, the researchers had to perform an
experiment through repeated cycles. Also, in image processing
analysis, proper results can be achieved in various ways as
there are many different algorithms to be exploited in image
processing processes. For example, in the PSU cancer cell
analyzer, which is our case study, there are various solutions
for segmenting the cancer cells that give similar outputs. It is
time and resource consuming to tediously and manually
compare which is the best solution.

A workflow system can help programmers to quickly
design and re-design the processing steps. In this work, we
explore and enhance the Taverna Workbench [1], a workflow
software for bioinformatics, to assist programmers for
analyzing image processing algorithms visually and codelessly.
Even non-expert programmers can create a practical workflow.
The programmers can graphically control input, output and
simulation variables via the data link. They do not need to be
familiar with the details of the back-end system. Another key
value of using Taverna is that it allows the users to add their
own components which can include our provided image
processing services for being processed on its workflow.

Harpia [2], a project that demonstrates a similar idea of
visual interface, provides a stand-alone graphic environment
that helps developing, prototyping and learning of image
processing programming using OpenCV functions. Its interface

is simple and user-friendly. There are many basic OpenCV
functions provided for the user to assemble block diagrams.
However, Harpia does not allow users to add or manage its
functions. Due to the lack of new features updated, the support
for complex operations is also not presented according to the
latest version, Harpia 1.1.

Using the Taverna workflow system that enables the
integration of distributed web services and allows addable and
adaptable web services, we can provide a more flexible and
scalable environment at some cost of web service
communication. Our system will help the programmers to
develop optimized image processing workflow diagrams and
improve the designed system performance. Our case study in
this paper is Cell Image Analyzer (CIA) that has been
developed since 2008 [3].

II. TAVERNA WORKBENCH

With the rapid growth of e-Science technologies and
applications, scientific workflow systems have been used in
many specific domains. There are many examples of workflow
systems. Most of them are visual programming interfaces that
enable scientists to orchestrate the sequence of tasks in order to
simulate their experiments and to obtain the result in real-time,
e.g. Taverna Workbench, Triana [4], Kepler [5].

Triana’s graphic user interface has more powerful editing
capabilities for workflow composition. It came from the wave
analysis environment at first and now large lengths of
applications have been added. By the way, Triana is a data-
flow system. The control links such as looping and conditional
behaviors are not included. Kepler provides more flexibility in
workflow composition. Having some incompatibility in sharing
resources with others, Kepler was not widely used. Finally, we
have decided to choose Taverna because of its up-to-date
features, strong user and developer communities and piles of
research documents and publications [6].

Taverna Workbench is an open source scientific workflow
environment includes the graphic user interface based
workflow composer and a workflow executive engine. The
workbench consists of a set of processors which representing
various kinds of software components such as web services,
java classes and local scripts. The editor allows the user to

329

USER UTCC
Text Box
2012 Ninth International Joint Conference on Computer Science and Software Engineering (JCSSE)

USER UTCC
Text Box
978-1-4673-1921-8/12/$31.00 ©2012 IEEE

easily create a workflow by graphically dragging elements into
the workflow editor. In order to control the data flow, the
processors are connected through the data links and exchange
data between processors. With the advantage of visualization
that easily describes working processes, mostly Internet-based
services and more reusable components, Taverna has changed
the way of doing scientific research.

Recently, Taverna gains popularity fast. For example, the
Cancer Grid (caGrid) [7], the platform that enables sharing of
the cancer research resources integrates with Taverna
environment to help for analyzing information from different
sources. The medical image processing on the Enable Grids
for E-sciencE (EGEE) Grid [8] uses Taverna as a workflow
enactment tool. In addition, there is an online community for
users sharing scientific workflows and computational resources
called myExperiment [9]. Since Taverna supports major
bioinformatic services, the workbench is widely used in
bioinformatic researches and data intensive applications.

In this work, we employ the workbench as a workflow
editor in order to optimize image processing workflows. The
workbench access the web service endpoint interface via Web
Service Definition Language (WSDL) files which describe the
image processing service descriptions.

III. PSU’S CELL IMAGE ANALYZER, THE CASE STUDY

Our case study, PSU’s cell image analyzer [3], is a
computer-aided system for analyzing microscopic images
developed by Prince of Songkla University’s research team.
The system automatically counts for the number of nuclear
stained breast cancer cells and works as an assistant system in
pathological analysis of breast cancer. Various ways have been
proposed by researchers in order to perform the segmentation
of breast cancer cell images. In 2007, they presented the use of
color based segmentation using back-propagation neural
networks. This method shows how to separate positive and
negative cancer cells from the cell image background. In 2008,
a new method has been proposed for cell segmentation using
K-Mean Clustering which can be used to improve the
performance of previous researches. A new approach on
segmenting breast cancer cells has been proposed to perform
color space transformation, global thresholding method, and
morphological operations in 2009. The newest method
presented in 2010 used the extracted feature technique to
classify the cell type [10, 11].

The above references indicate that those all proposed
methods give similar results but their performances were
slightly different. Analyzing these processes and comparing
their performances manually take quite a long time. In
addition, the breast cancer cell images used in this study are
rather large and need more computing resources to produce
feedbacks in real-time.

Our system provides many components of image
processing algorithms based on our case study. The
programmers can rearrange the block diagrams to perform the
image processing procedure as they want.

IV. METHODS AND SOLUTION

A. System overview and implementation

Our system is implemented as a web service application.
There are two representative sides which are the server side
and client side. The system characteristic is described in Fig. 1.

First is the image processing services, the server role. The
web server can be on the same machine as the client or a
remote server that can provide better performance. We have
implemented a web service server using the open source
gSOAP toolkit [12] running on a 6-core CPU with 8 GB of
RAM. Each of image processing service description is
performed by a Common Gateway Interface (CGI) program
which is deployed using the Simple Object Access Protocol
(SOAP) 1.1 protocol over an HTTP web server. All of Web
service interfaces are defined by WSDL documents.

Taverna Workbench, the client role, is a web service client
that supports workflow design for the operational sequences
and structures of processors containing image processing
algorithms. The processor input and output ports correspond to
the WSDL service interface which is provided by the web
service server.

The WSDL file is a document describing how the image
processing web service is connected to the workbench. Taverna
implements each processor by a single web service operation
related to the WSDL file.

As shown in Fig. 1, a programmer can arrange the
processors by dragging them to construct a workflow. The data
link dependently connects the output of one processor to the
input of another. The planed workflow is continuously
executed by the Taverna workflow execution engine.

Figure 1. The system overview

Web Server

Planed

Workflow

Taverna Workbench

WSDL
Removing

Small Cell

Service

Color

Transformation

Service

…
Thres-

holding

Service

Service request Service response

330

Each step of the workflow will be executed at the web
service server in sequence. The next processor will start
executing after the previous processor has successfully
completed the execution and returned response message to
Taverna.

B. Image processing service operations

The image processing services in this work are developed
using OpenCV library [13], a free and powerful open source
computer vision library that provides a various number of real
time image processing, computer vision and machine learning
methods.

Our work provides some frequently used OpenCV
functions for building a large range of image processing
workflow, including basic matrix arithmetic, low-level image
processing and image analysis. These routines are divided into
two main classes: an original set of image processing functions
in OpenCV and the group of the cancer cell image analysis
functions based on our case study.

The set of image operating functions includes the often
used image processing functions such as basic structure and its
operations, image filtering, structural analysis, image
transformation, and neural networks. The groups of cancer cell
image analysis functions have been converted from our case
study, breast cancer cell analysis application. There are many
different groups of analysis operation such as removing small
cells, scanning cells, separating two cells with one wall, and
counting the number of positive cancer cells. Different types of
processors mentioned above can be put together within a single
image processing workflow.

To build image processing services, a web server must be
configured. A set of web services have been designed and
implemented by using the gSOAP toolkit which automatically
provides WSDL files for integration with Taverna. Each
service performs an OpenCV functions. Some of the image
processing apparatus may need more than one OpenCV
function, e.g., contour drawing, machine learning or neural
network training, depending on the complexity of the
algorithm. We have implemented an image loading service that
converts image data into a binary format and keep it in a local
storage. Therefore, the newly added service can use the same
image data storage as previously used in the former service for
its processing. Once the service is called, the image data will
be loaded from the local memory storage, and processed by the
OpenCV functions in that service and keep the image result
into the local memory storage once again.

As common image processing routines are well suited for
data parallelism, we have therefore implemented some parallel
image processing services using the OpenMP directives [14].
In order to design the parallel execution services of image
processing, we split the image data into one smaller piece per
thread. The data is separately processed by each thread and
then gathered into an image of the same size as it was.

This will help the programmer to design for better
performance in processing the image data. The programmer
can mix serial and parallel service operations together into a
diagram as they want. Also, OpenCV also officially supports

Intel® Threading Building Blocks (Intel TBB) which enables
more parallelizable and provides better performance.

C. Building a new web service by the user

The interactive image processing service in this study is
implemented as a CGI program installed on the web server,
performing the image processing execution and
communicating with the Taverna engine. Some of basic image
processing operations are provided. In addition, the advanced
user can also design new image processing services for other
proposes.

In order to build an image processing service, a processing
method must be defined as a function in a CGI program. The
input and output data types are required for the interaction as
well. In this case, using CGI-based is quite easy as it is a
simple and well known mechanism. The HTTP web server will
manage the requests and responses for the web services.

The programmer can use a normal image processing
function by adding some relevant parameters which are used to
communicate with the web server. Most of our provided
services interact with the binary image data, thus, the image
data transformation services and the local memory storage are
provided as described in Section E. Input and output of a
service operation should be image data filenames which will
inform the web service engine where its data is being held.

Figure 2. Adding new image processing web services

web server

new web

services

new WSDL

old web

services

old WSDL

local

memory

storage

(tmpfs)

A

B

331

Using gSOAP to build a web service, the service definition,
service namespace, location endpoint of the executable
program, and other parameters must be defined in the header
file. The program file contains the service operations which are
implemented as functions. This procedure may be slightly
different if using other tool to develop the web service.

Fig. 2 shows the overview of how to add a new image
processing service to the system. Once the CGI program is
deployed, the toolkit also generates a WSDL file. The
programmer needs to provide the URL pointed to the WSDL
for Taverna. The service operation will be available after
adding the WSDL to Taverna Service Panel. Box A. in Fig.2
shows the newly added service processor which can be used
together with the old service processors shown in Box B.

More details about how to build a web service application
using gSOAP are described in [12]. If the programmer is not
familiar with CGI, Taverna also supports other types of web
services, such as REST-style web services, local java services,
and external command tools.

D. The example workflow

Fig. 3 shows an example of a designed workflow following
the cancer cell image processing steps based on our case study.
The image processing web service operations appeared as
green blocks are connected consecutively in order to form an
execution flow.

The workflow input is a breast cancer tissue stained image
which is used in the case study experiments. The digital image
was saved in a color JPEG format with the resolution of 2,560
×3,600. The data links show relationships amongst processors.

Once image data is sent to be processed at the web service
server, the first operation will prepare the data to be used in the
next operation by converting a JPG image into a matrix data
which is one of the employed image structures that can be used
as an input of any service operation that processes images.

The workflow designer can add new parameters to any
processor. Default parameters can also be provided when the
user does not set the parameters. We also validate input
parameters to ensure the correctness due to the high complexity
and restriction in coding with OpenCV in order to enable that
sequentially linked components can well communicate with
each other.

From the example workflow in Fig. 3, by default, the
engine invokes the services in parallel if there are no data
dependencies between the services. The result is collected to
the server after completing each service.

According to the case study, researchers had tediously
spent much of experiment time to investigate each part of cell
processing steps finding which are proper techniques for the
cell counting system. Our listed component group of image
processing functions enables that researchers can easily arrange
the processing step. It clearly reduces the whole design time for
the case study project.

E. Image data storage problem

This kind of storage problem occurs when implementing
the image processing algorithms as web services which are

considered as complete programs by the operating system. The
common approach of image processing application uses the
existing image data to perform the execution of each different
function in a pipeline. When the processing steps are like that it
looks contradictory to the characteristic of web services as each
of them are independent applications. After a service is
completely executed, the program exits and all of its allocate
memory is completely deleted. It is the problem of unnecessary
repeating memory relocation; loading a program, allocate its
memory, release the memory and then reallocate it again every
time the web service is called. Therefore, the data management
problem is prominent.

In the web service technology, there are many interesting
ways to transfer binaries amongst web services, for example,
using Base64 encoding to exchange binary contents which has
a great interoperability with Extensible Markup Language
(XML) standard. However, data encoded in Base64 is not
efficient because the Base64 encoding roughly increases file
sizes by 33% larger than their binary format. Another method
is embedding Message Transmission Optimization Mechanism
(MTOM), the binary data in the SOAP envelope. This method
uses a smaller size of the data exchange than does the Base64
encoding method since data is pure binary. The other method
uses the File Transfer Protocol (FTP) server or shared location
and keeps only the reference to the binary data. Since the
image size is quite large, we choose to keep the image data at
the server and exchange only the file reference. In order to
view the result image at the workbench, the MTOM method
has been implemented.

Figure 3. The example of cancer cell analysis workflow

332

According to reduce the execution time and storage
resources when processing the workflow of image
processes, the Temporary File System (tmpfs) [15] is used as
an image data storage area. This is because reading and writing
data in the memory is faster than to do so on storage disks. The
tmpfs allowed the user to store all files in virtual memory. File
access in this case only causes a memory-to-memory copy of
data; no files will be created on the hard drive. However, as the
files are stored in RAM, they will be completely deleted if the
user unmounted the partition or shut the device down.

In addition, the image's binary data is saved to tmpfs
instead of an image file format stored in the file system in order
to avoid losing the image quality and reduce the access time to
the I/O. Depending on different system behaviors, developers
can choose either the tmpfs option or the MTOM standard
method which are also provided.

V. RESULTS AND DISCUSSION

In this work, we provide various image processing methods
as available web services to be added in a Taverna workflow as
shown in Table 1.

Our work provides two types of image processing services
which can be used to compose workflows in Taverna as
described in Section B. The first group is a set of original
functions in the OpenCV library which are shown in the first
column in Table 1. Another column shows a group of
functions for the cancer cell image processing based on the
case study. Each type has different characteristics which are
suitable for different purposes. The pro of the first group is that
the developers can easily create workflows from the OpenCV
library. It provides more flexibility but the developers must
have a know-how of the OpenCV library. In addition, due to
the complexity of the OpenCV algorithms and the web service
characteristics, deep adaptive control of the code may not be
possible.

On the other hand, using the second group of web service
operations will be easier because there is no need to worry
about the functions within the service. This is useful for the
developers who do not deeply know the OpenCV library.

TABLE I. OUR AVAILABLE IMAGE PROCESSING WEB SERVICE

OPERATIONS

Operations from OpenCV Functions
Operations for the case

study

- Arithmetic and logical operations such

as sum, subtraction, multiplication,

division, bitwise not, bitwise or,

bitwise and bitwise xor.

- General functionality such as loading,

saving and displaying images.

- Image transformation such as color

conversion, thresholding and

watersheding.

- Image filtering operations such as

dilation, erosion and morphology.

- Structural analysis such as contour

detection and contour area calculation.

- Feature detection such as canny

operation.

- Machine learning such as neural

networks.

- Small cell removing

- Cell scanning

- Cell separation

- Result preparation

However, they may get low flexibility in designing the
workflows because the algorithms are fixed within the web
service operations. The results have been validated as our web
service applications gave the same results as non-web service
applications from the case study. Our work provides some
basic of cell image processing operations. However, new
operations can later be easily added.

Fig. 4 displays the integration of our image web service
operations to the Taverna Workbench.The left panel (A) shows
the image processing service provided by adding the WSDL
file to the workbench. Programmers can visually drag and drop
services to the graph layout view (B) in order to design a
workflow. After running the workflow, the results will be
shown in the invocation window (C). Taverna also shows the
execution time of the whole workflow. The result of the
workflow shows an image result with different colors of
positive and negative cancer cells. In this case, red indicates
positive cells and green indicates negative cells.

The major advantage of our image processing workflow
builder is the ability to select the available image processing
processors, thus the workflow designer can selectively address,
move, delete or control the flow of the workflow. The results
can be obtained in any part of a processor. Therefore, with this
method, programmers can more easily compare the results than
the old method. Thus, using this workflow system can
obviously enable the programmer to quickly design the
processing steps of image processing; especially in this case
study, the cancer cell image analysis.

As we mentioned above, using the workflow techniques
can assist the programmer to reduce the design time and
complexity. However, to analyze which is the proper workflow
for the application is the task of the programmer because the
result satisfaction depends on the background knowledge of the
workflow designer and the case specification.

Work is ongoing to provide more service operations to
support the image processing workflow environment since
there are still more valuable functions from the OpenCV
library. Moreover, this workflow technology enables sharing
services with other applications across multidiscipline.
Therefore, it is possible to adopt this work for more general
and wider usage.

VI. CONCLUSION

Applying the workflow technology, we present an easy
solution to design image processing steps illustrated by using
the cancer cell analysis as a case study. We have successfully
provided a web service server consists of image processing
algorithms which are sets of image operating functions in
OpenCV library and groups of image processing function
depending on specific needs based on PSU's Cancer Cells
Analyzer application. The image processing services allow the
programmer to arrange them in order to perform the desired
workflow of image processing in the workflow editor. The
programmer can more easily choose, combine and reorganize
any of the provided image service operations. This can help
them to quickly design and tune up the image processing flow.
Then, the programmer can decide which workflow gives better
performance. In addition, local data storage has been used to

333

improve the data exchange problem between the server side
and the client side. Also, the programmer can easily and
quickly add new processing services on the web server
following our guideline. New web services can be easily
added. The workflow can include distributed and parallel web
services for performance enhancement and system scalability.
Memory management options such as tmpfs and MTOM are
also provided for faster execution on a standalone machine.

ACKNOWLEDGMENT

This work has been funded by Department of Computer
Engineering, Faculty of Engineering, Prince of Songkla
University. The authors are grateful for Dr. Somchai
Limsiroratana’s advices and contribution on the image
processing source code and data in the case study.

REFERENCES

[1] T. Oinn et al., “Taverna: Lessons in Creating a Workflow Environment
for the Life Sciences,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, 2006, pp. 1067-1100.

[2] S2i - Industrial Intelligent Systems. (2009, July). Harpia Project
[Online]. Available : http://s2i.das.ufsc.br/harpia/en/home.html

[3] P. Phukpattaranont et al., “Computer-Aided System for Microscopic
Images: Application to Breast Cancer Nuclei Counting” in Int. Nat.
Applied Biomedical Engineering, vol. 2, no. 1, 2009, pp. 69-74.

[4] I. Altintas et al., “Kepler: an extensible system for design and execution
of scientific workflows,” in Proc. 16th Int. Conf. Scientific and Statistical
Database Management, 2004, pp. 423-424

[5] S. Majithia et al., “Triana: a graphical Web service composition and
execution toolkit,” in Proc. IEEE Int. Conf. Web Services, 2004, pp.
514-521.

[6] E. Deelman et al., “Workflows and e-Science: An overview of workflow
system features and capabilities,” Future Generation Computer Systems,
vol. 25, no. 5, pp. 528–540, 2009.

[7] W. Tan et al., “CaGrid Workflow Toolkit: A taverna based workflow
tool for cancer grid,” BM, vol. 11, p. 542, 2010.

[8] K. Maheshwari, P. Missier, C. Goble, and J. Montagnat, “Medical Image
Processing Workflow Support on the EGEE Grid with Taverna,” in Intl

Symp. Computer Based Medical Systems, Albuquerque, New Mexico,
USA, 2009.

[9] D. D. Roure, C. Goble, and R. Stevens, “The design and realisation of
the Virtual Research Environment for social sharing of workflows,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 561-567, 2009.

[10] P. Phukpattaranont and P. Boonyaphiphat, “Color based
segmentation of nuclear stained breast cancer cell images,” in Proc.
ECTI Transaction on Electrical Eng., vol. 5, no. 2, 2007, pp. 158-164.

[11] P. Phukpattaranont and P. Boonyaphiphat, “Computer-aided analysis of
nuclear stained breast cancer cell images,” in Proc. ECTI Transaction on
Electrical Eng., vol. 1, 2008, pp. 485 –488.

[12] R. A. van Engelen and K. Gallivan, “The gSOAP Toolkit for Web
Services and Peer-To-Peer Computing Networks”, in 2nd IEEE Int.

Symp. Cluster Computing and the Grid, Berlin, Germany, 2002, pp. 128-
135.

[13] G. Bradski and A. Kaeller, Learning OpenCV—Computer Vision with
the OpenCV Library, O’ Reilley Media, 2008.

[14] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming”, IEEE Computational Science and
Engineering, vol. 5, 1998, pp. 46-55.

[15] P. Snyder, “tmpfs: A virtual memory file system,” In Proc. EUUG
Conf., 1990, pp. 241–248.

Figure 4. The Taverna workflow editor with a list of our available image processing service operations

A

B C

334

