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Abstract 
Falls are among the most common causes of injuries 

in elderly people. In order to prevent falls, one of the 

most effective and easy ways is home-based regular 

exercise, which consists of simple movements and do 

not require weights. To develop exercise recognition 

system based on surface electromyography (EMG) 

signals, the first and the most important step is an 

extraction of the efficient features. A main advantage 

of the system is an ability to monitor the performance 

of the defined exercises with the particular muscles. 

This research was aimed to address this challenge by 

investigating the class separability performance of 

frequency-domain EMG features during exercises in 

elderly people, and identifying the suitable feature 

sets that would provide the effective pattern 

recognition. Eleven features were evaluated by using 

a statistical criterion method, and tested with EMG 

data recorded from ten elderly subjects on four 

muscles during employing seven exercises. Frequency 

ratio and mean frequency showed the best class 

separation performance of all studied features for the 

posterior and the front thigh muscles respectively, 

whereas the third spectral moment produced the best 

classification performance for the muscles located in 

the lower leg. The combination of such features is 

recommended to further improve the performance of 

the exercise recognition system in the elderly. 

Keywords:  electromyography signal, fall prevention, 

feature selection, pattern recognition, RES index 

 

1. Introduction 
 Falls are among the most common causes of 

injuries in elderly people [1]. In order to prevent falls, 

one of the most effective and easy ways is home-

based regular exercise [2], which consists of simple 

movements and do not require weights. To promote 

the daily-life exercises in elderly people, the research 

proposed the exercise recognition system based on 

surface electromyography (EMG) signals. A main 

advantage of this system is an ability to monitor the 

performance of the defined exercises with particular 

muscle groups [3]. In addition, the system can be used 

to control the computer game or toy robot in order to 

communicate with elderly persons [4-5]. 

 In the EMG-based pattern recognition system, 

the first and the most important step is an extraction 

of the efficient features [6-7]. Because, the EMG data 

do not contain only the useful information but also 

include a variety of noises or interferences [8]. This 

may lead to difficulty in the analysis of EMG data. 

This research was aimed to address this challenge by 

investigating the class separability performance of 

frequency-domain EMG features during balance and 

strength exercises in the elderly, and identifying the 

suitable feature sets that would provide the effective 

EMG pattern recognition. To our best knowledge, the 

evaluation of frequency-domain EMG features of 

classifying exercises in preventing falls in elderly 

persons has never been studied before [9-10]. 

 

2. Experiments and Data Acquisition 
 EMG data used in the signal analysis were 

recorded from ten elderly subjects during seven 

exercises on four specific muscles. The seven balance 

and strength exercises recommended from two 

physiotherapists respond to the important lower-limb 

muscle groups consisting (1) standing hip flexion with 

the right leg, (2) standing hip flexion with the left leg, 

(3) half squats, (4) wall push-off with chair, (5) 

standing toe raises, (6) standing heel raises, and (7) 

pulling stomach in. More details about these exercises 

were described in the next subsection.  

 Four representative muscles on the right leg are 

(1) the biceps femoris, (2) the vastus medialis, (3) the 

gastrocnemius and (4) the tibialis anterior, as shown 

in Fig. 1. The bipolar Ag/AgCl surface electrodes 

(Kendal ARBO, H124SG) were used for each muscle 

and an Ag-AgCl Red-Dot surface electrode (3M, 

2237) was placed on the wrist to provide a common 

ground. The measurement device was set a band-pass 

filter with a 10-500 Hz bandwidth and an amplifier 

with a 1000x. In addition, EMG data were sampled by 

using an analog-to-digital converter (NI, USB-6009), 

and the sampling frequency was set at 1024 Hz with a 

resolution of 14 bits. 

 Each participant was asked to perform seven 

exercises as mentioned above for three seconds (3072 

samples). However, the recording length was set at 

4000 samples because elderly subjects cannot provide 

the accurate exercise within three seconds for all 

trials. Each exercise was repeated for three times. In 



 

order to avoid any effect of muscle fatigue on the 

measurements, a resting time of at least five minutes 

was taken between each trial. In total, 30 datasets 

were collected for each exercise from ten subjects. 

 

 
Figure 1. The muscle locations for four muscles. 

 

2.1 Balance and Strength Exercises 

 In preparation stage, the subject firstly stands 

behind a chair with feet one foot apart and uses it for 

support. Next, the subject places both hands on the 

chair backrest. This preparation procedure was for the 

first three exercises and also the fifth and the sixth 

exercises. For the seventh exercise, the subject stands 

with feet together and both arms at side. However, for 

the fourth exercise, the subject sits on the chair with 

keeping the back straight and looking straight ahead, 

while places the feet against the wall, about one foot 

from a wall by bending the knee. The following is the 

description of the execution stage. It should be noted 

that each exercise was performed within three 

seconds. 

 E1) Standing hip flexion with the right leg: The 

subject lifts right leg off the floor by bending the knee 

toward chest, no more than 90 degrees, while standing 

on left leg. After that the subject returns his/her leg to 

the preparation position to complete one round. 

 E2) Standing hip flexion with the left leg: This 

exercise is similar to the first exercise but the subject 

lifts the left leg and stands on the right leg instead. 

 E3) Half squats: The subject bends his/her 

knees, no more than 90 degrees, and holds for a 

second. After that the subject returns his/her knees to 

the preparation position to complete one round. 

 E4) Wall push-off with chair: The subject pushes 

off the wall until his/her legs are in an outstretched 

position and holds for a second, and returns to the 

preparation position to complete one round. 

 E5) Standing toe raises: The subject rises up 

onto his/her heels as lifting both toes off the ground 

and holds for a second, and then returns to the start 

position to complete one round. 

 E6) Standing heel raises: The subject rises up 

onto his/her toes as lifting both heels off the ground 

and hold for a second, and then returns to the start 

position to complete one round. 

 E7) Pulling stomach in: The subject breathes in 

and slowly pulls his/her stomach in, and holds for a 

second. Then, the subject breathes out and slowly 

pushes his/her stomach out. 

 The procedure of seven exercises is respectively 

shown in Fig. 2(a) through Fig. 2(g). All exercises 

were employed in order to improve strength, balance, 

flexibility, or endurance in the elderly. 

 

 
(a)  

 
(b) 

 
(c) 
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Figure 2. Preparation and execution stages of all 

exercises. (a) Standing hip flexion with the right leg 

(b) Standing hip flexion with the left leg (c) Half 

squats (d) Wall push-off with chair (e) Standing toe 

raises (f) Standing heel raises (g) Pulling stomach in. 



 

3. Methodology 
3.1 Feature Extraction 

 Eleven frequency-domain features proposed in 

the literature during the past decade were evaluated in 

this study. Usually, time-domain features were paid 

more an interest in the classification of EMG data, 

however, the frequency-domain features were also 

successful for the EMG classification, particularly in 

hand grasps recognition [11-12]. This may be useful 

for the classification of exercises in the elderly that 

the EMG data have a small difference in EMG signal 

amplitude in some exercises. 

 Frequency/spectral-domain features can be used 

to study not only muscle contraction but also muscle 

fatigue and motor unit (MU) recruitment analysis 

[13]. Power spectral density (PSD) becomes a major 

analysis in frequency-domain. Different types of the 

statistical properties were applied to the PSD which is 

defined as a Fourier transform of the autocorrelation 

function of the EMG data. It can be estimated using 

either Periodogram or parametric methods i.e. the AR 

model [14]. The definition of all frequency-domain 

features is described as follows: 

 1) Total power (TTP) 

 TTP is defined as an aggregate of the EMG 

power spectrum [15]. Another general name of TTP is 

zero spectral moment (SM0) [12]. The definition is as 

 
1

M

j

j

TTP P SM0


  , (1) 

where Pj is the EMG power spectrum at frequency bin 

j, and M is the length of frequency bin. 

 2) Mean power (MNP) 

 MNP is an average of the EMG power spectrum 

[15]. The calculation is defined as 
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MNP P M


 . (2) 

 3) Median frequency (MDF) 

 MDF is a frequency at which the EMG power 

spectrum is divided into two regions with equal 

amplitude. In other words, MDF is a half of TTP [7-

8]. It can be expressed as 
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 4) Frequency ratio (FR) 

 FR is aimed to distinguish between contraction 

and relaxation of the muscle using a ratio between the 

low frequency and the high frequency components of 

EMG signal [16]. The equation is defined as 

 
ULC UHC

j j

j LLC j LHC

FR P P
 

   , (4) 

where ULC and LLC are the upper- and lower-cutoff 

frequency of low frequency band and UHC and LHC 

are the upper- and lower-cutoff frequency of high 

frequency band, respectively. Such thresholds were 

defined based on the experiments as 10-60 Hz for low 

frequency component and 100-250 Hz for high 

frequency component. From mathematical definition, 

FR is an inverse case of high-to-low ratio (H/L ratio), 

which is widely used in the study of diaphragmatic 

fatigue [17]. 

 5) Peak frequency (PKF) 

 PKF is a frequency at which the maximum EMG 

power occurs [15]. It is given by 

 max( ),jPKF P j = 1, ...,M  . (5) 

 6) Power spectrum ratio (PSR) 

 PSR is an extension of PKF and FR [18]. It is 

defined as a ratio between the energy P0 which is 

nearby the maximum EMG power spectrum and the 

energy P which is the whole energy of the EMG 

power spectrum. Its calculation can be written by 
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PSR P P

P

 

  

    , (6) 

where f0 is a feature value of PKF and n is the integral 

limit. In this research, n is set at 20 and the energy of 

P ranges from 10 Hz to 500 Hz based on the previous 

recommendation [18]. 

 7)-9) The first, the second, and the third spectral 

moments (SM1-SM3) 

 Spectral moment is an alternative statistical 

analysis way to extract feature from the EMG power 

spectrum. The first three spectral moments are useful 

in EMG feature classification [12]. The definitions of 

their equations can be expressed as 
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SM2 P f
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1

M
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SM3 P f


 , (9) 

where fj is a frequency value of the EMG power 

spectrum at frequency bin j. 

 10) Mean frequency (MNF) 

 MNF is an average frequency which is 

calculated as a sum of product of the EMG power 

spectrum and the frequency divided by the total sum 

of the spectrum intensity [7-8]. Other common names 

of MNF are central frequency (fc) and spectral center 

of gravity [12]. It can be calculated as 
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MNF f P P
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  . (10) 

 11) Variance of central frequency (VCF) 

 VCF is one of the alternative statistical analysis 

ways to extract feature from the power spectrum [12]. 

It can be defined by using a number of spectral 

moments. It can be defined as 

 
2

2

1
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0 0 0
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SM SM
VCF P f f

SM SM SM
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 
 . (11) 

 
3.2 Evaluation Function 

 Generally, the selection of EMG features can be 

implemented based on two criteria: (1) the measure of 

classification rate obtained from the classifier (i.e. 

neural networks or support vector machine), and (2) 

the measure of discrimination in feature space by 



 

 
Figure 3. Four-channel surface EMG signals (top to bottom) from seven exercises (left to right: E1-E7) in the 

time domain. The x-axis ranges from 1 to 28000 samples and the y-axis ranges from -0.2 to 0.2 V. Sample data 

are from Subject 1. 

 

using the statistical criterion method [6-7]. In this 

research, the second criterion was used because the 

first criterion has a major disadvantage that the 

evaluation of features depends on the classifier type 

but the second one is not problematic in this way [19]. 

 During the past decade, there have been many 

statistical indices deployed for the evaluation of EMG 

features i.e. scattering index [7], Fishers linear 

discriminate index [16], Bhattacharyya distance [20], 

fuzzy-entropy-based feature evaluation index [21], 

and Davies-Bouldin index [22]. In one of our previous 

studies, a simple and effective statistical criterion 

method namely, RES index [23] was proven its better 

performance as EMG feature evaluation index. 

  A good quality in class separation means that 

the result of classification accuracy will be as high as 

possible. In other words, the maximum separation 

between classes is yielded and the small variation in 

subject experiment is reached. The definition of the 

RES index [23], the ratio between the Euclidean 

distance and standard deviation that used in this 

research, is as follows. 
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where m is the mean EMG feature, s is the standard 

deviation of feature, i is the channel number (1  i  I, 

I = 4), and p, q and k are the exercise number (1  k  

K, K = 7). The optimal class separation performance 

is yielded when the RES index has a high value. It 

should be noted that the values of EMG features from 

each EMG channel of all exercises were normalized 

to be in the range of 0 and 1, which can be expressed 

as 

 
min( )

max( ) min( )
norm

m m
m

m m





. (15) 

 It should be noted that the definition in this 

research is slightly different to the definition in our 

previous work [23]. In that study RES index was 

computed as an average of all EMG channels, 

whereas in this study RES index was computed for 

each EMG channel in order to find the usefulness of 

EMG channel. However, the RES index was proven 

that it exhibited the same trend with the efficient 

classifiers. 

 

4. Results and Discussion 
 The EMG data in this research acquired from the 

long movement duration. It should be noted that when 

the muscle contraction is maintained for a long period 

the amplitude of EMG signal is dropped. This may be 

difficult to classify the correct movement [24]. 

4.1 Characteristics of EMG Signal 

 Figure 3 shows a sample of the EMG data from 

four muscles during seven exercises in time domain. 

As can be clearly observed from all columns in Fig. 3 

except the last one, the pattern of EMG data have a 

significant difference between each of the four 

muscles. Thus such exercises are possible to classify 

using the EMG signals. On the other hand, in the last 

column, the EMG signal amplitudes are small. The 

patterns of EMG data from each muscle are slightly 

different because the EMG data were measured from 

only the muscles on the right leg, but the exercise, 

pulling stomach in, did not directly respond on the leg 

muscles. However, to minimize the EMG channels, 

the EMG data were measured from only four EMG 

channels on the right leg in this study. 

 Another interest is on the first and the fourth 

columns in Fig. 3, the EMG signals were greatly 

contaminated by the movement artifacts although a 

high-pass filter with a corner frequency of 10 Hz was 

implemented. This may be due to much dynamic 

movement in both exercises, standing hip flexion with 

the right leg and wall push-off with chair, on the 

muscles located surface electrodes. The appropriate 

filter specifications to remove these artifacts should 

be determined in further study [25]. 



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Averaging RES indices of eleven frequency-

domain EMG features for the classification of seven 

exercises with four lower-limb muscles: (a) biceps 

femoris, (b) vastus medialis, (c) gastrocnemius, and 

(d) tibialis anterior, from ten elderly subjects. 

 

4.2 Evaluation of EMG Features 

 Overall eleven frequency-domain features were 

computed from four EMG muscle channels and were 

calculated their RES indices for each of four channels 

as shown respectively in Fig. 4(a) through Fig. 4(d). 

From the results in Fig. 4(a), FR has the maximum 

RES index. From the distribution of FR in the first 

channel, seven exercises can be grouped as E6, E4-

E7, E1-E2-E5, and E3 (from maximum to minimum). 

MNF and MDF are other two features that provided a 

high RES index. This muscle, the biceps femoris, is a 

large muscle located on the back of the thigh. From 

the results in Fig. 4(b), MNF has a slightly better 

performance than other features including FR, MDF 

and SM1-SM3. MNF can effectively separate four 

exercises: E2, E4, E5, and E6. This muscle, the vastus 

medialis, is a major muscle located on the front of the 

thigh. The first two muscles were respectively used as 

the representative muscles of the hamstrings muscle 

group and the quadriceps muscle group.  

 The gastrocnemius and the tibialis anterior, the 

third and the fourth muscles, are the muscles located 

in the lower part of the leg. In Fig. 4(c) and Fig. 4(d), 

SM3 was the best feature, followed closely by SM2, 

SM1, TTP and MNP. The SM3 computed from both 

muscles can effectively discriminate three exercises 

consisting E1, E6 and E7. Furthermore, all features 

provide only one value per channel, which is small 

enough to combine with the other features to make a 

more powerful feature vector, while it does not 

increase the computational burden for the classifier. 

 Among four muscles, the information obtained 

from the gastrocnemius muscle provided the highest 

RES indices. However, four EMG channels (the 

biceps femoris, the vastus medialis, the gastrocnemius 

and the tibialis anterior) are still important in the 

balance and strength exercise recognition system for 

preventing falls in the elderly because such muscles 

cover all important lower-limb muscle groups located 

in both the front and the posterior of the upper and the 

lower legs. It will be useful for providing information 

for the physiotherapists and the doctors. Therefore, 

such four muscles are recommended to be used in the 

classification of lower-limb exercises. 

  

5. Conclusion and Future Research 
 Based on the experimental results, feature sets 

included FR, MNF, and SM3 are suggested to further 

improve the performance of the exercise recognition 

system in the elderly. This feature sets may combine 

with other useful time-domain EMG features to form 

an optimal feature vector for the pattern recognition 

and should be tested with the effective classifiers i.e. 

the linear discriminant classifier or the support vector 

machine in future research. Moreover, there are many 

exercises that can be employed to improve strength, 

balance, flexibility or endurance in elderly persons 

such as plantar flexion, hip extension, knee flexion, 

knee extension and side leg raise. All of these 

exercises can be applied for the recognition system 

based on EMG signal analysis in future research. 
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